Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $65$ | |
| Group : | $C_2\times S_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,3,15,8,17)(2,11,4,16,7,18)(5,19,14,6,20,13), (1,18,2,17)(3,10,15,19)(4,9,16,20)(5,8,11,13)(6,7,12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
10T22 x 2, 12T123 x 2, 20T62 x 2, 20T65, 20T70, 24T570, 24T577, 30T58 x 2, 30T60 x 2, 40T173 x 2, 40T180, 40T181, 40T187 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5,17)( 6,18)( 7,10)( 8, 9)(11,12)(13,15)(14,16)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $20$ | $3$ | $( 3, 8, 9)( 4, 7,10)( 5,12,18)( 6,11,17)(13,15,20)(14,16,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3,14)( 4,13)( 7,20)( 8,19)( 9,16)(10,15)(11,17)(12,18)$ |
| $ 6, 6, 6, 1, 1 $ | $20$ | $6$ | $( 3,14, 9,19, 8,16)( 4,13,10,20, 7,15)( 5,11,18, 6,12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $10$ | $2$ | $( 3,19)( 4,20)( 5, 6)( 7,13)( 8,14)( 9,16)(10,15)(11,12)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 6, 6, 6, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 7, 9, 4, 8,10)( 5,11,18, 6,12,17)(13,16,20,14,15,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,13)( 4,14)( 5, 6)( 7,19)( 8,20)( 9,15)(10,16)(11,18)(12,17)$ |
| $ 6, 6, 3, 3, 2 $ | $20$ | $6$ | $( 1, 2)( 3,13, 9,20, 8,15)( 4,14,10,19, 7,16)( 5,12,18)( 6,11,17)$ |
| $ 10, 10 $ | $24$ | $10$ | $( 1, 3, 6,12,15, 2, 4, 5,11,16)( 7,17,13,10,19, 8,18,14, 9,20)$ |
| $ 4, 4, 4, 4, 4 $ | $30$ | $4$ | $( 1, 3, 6,14)( 2, 4, 5,13)( 7,19, 8,20)( 9,18,12,16)(10,17,11,15)$ |
| $ 4, 4, 4, 4, 4 $ | $30$ | $4$ | $( 1, 3, 8, 9)( 2, 4, 7,10)( 5,12,16,20)( 6,11,15,19)(13,17,14,18)$ |
| $ 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 4, 6,11,15)( 2, 3, 5,12,16)( 7,18,13, 9,19)( 8,17,14,10,20)$ |
Group invariants
| Order: | $240=2^{4} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [240, 189] |
| Character table: |
2 4 3 2 4 2 3 4 2 4 2 1 3 3 1
3 1 1 1 . 1 1 1 1 . 1 . . . .
5 1 . . . . . 1 . . . 1 . . 1
1a 2a 3a 2b 6a 2c 2d 6b 2e 6c 10a 4a 4b 5a
2P 1a 1a 3a 1a 3a 1a 1a 3a 1a 3a 5a 2e 2e 5a
3P 1a 2a 1a 2b 2c 2c 2d 2d 2e 2a 10a 4a 4b 5a
5P 1a 2a 3a 2b 6a 2c 2d 6b 2e 6c 2d 4a 4b 1a
7P 1a 2a 3a 2b 6a 2c 2d 6b 2e 6c 10a 4a 4b 5a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1
X.3 1 -1 1 1 -1 -1 1 1 1 -1 1 -1 -1 1
X.4 1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1
X.5 4 -2 1 . 1 -2 4 1 . 1 -1 . . -1
X.6 4 2 1 . -1 2 4 1 . -1 -1 . . -1
X.7 4 -2 1 . -1 2 -4 -1 . 1 1 . . -1
X.8 4 2 1 . 1 -2 -4 -1 . -1 1 . . -1
X.9 5 1 -1 1 1 1 5 -1 1 1 . -1 -1 .
X.10 5 -1 -1 1 -1 -1 5 -1 1 -1 . 1 1 .
X.11 5 1 -1 -1 -1 -1 -5 1 1 1 . 1 -1 .
X.12 5 -1 -1 -1 1 1 -5 1 1 -1 . -1 1 .
X.13 6 . . -2 . . 6 . -2 . 1 . . 1
X.14 6 . . 2 . . -6 . -2 . -1 . . 1
|