Properties

Label 20T647
Order \(51200\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $647$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,9,13,18)(2,5,10,14,17)(3,15,7,19,11,4,16,8,20,12), (1,15,18,12,13,8,9,3,6,20)(2,16,17,11,14,7,10,4,5,19)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
8:  $D_{4}$
10:  $D_{5}$, $C_{10}$ x 3
20:  $D_{10}$, 20T3
40:  20T7, 20T12
50:  $D_5\times C_5$
100:  20T24
200:  20T53
12800:  20T455
25600:  20T538

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $D_5\times C_5$

Low degree siblings

20T647 x 5, 40T18704 x 3, 40T18727 x 6, 40T18728 x 6, 40T18750 x 6, 40T18751 x 12, 40T18752 x 24, 40T18775 x 6, 40T18776 x 12, 40T18777 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 152 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $51200=2^{11} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.