Properties

Label 20T638
Order \(51200\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $638$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,3,17,5,16,8,13,9,12)(2,19,4,18,6,15,7,14,10,11), (1,14,7,17)(2,13,8,18)(3,11,6,19,4,12,5,20)(9,15,10,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
200:  $D_5^2 : C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $D_5^2 : C_2$

Low degree siblings

20T637 x 3, 20T638 x 2, 20T641 x 3, 20T649 x 3, 32T1520136, 40T18719 x 3, 40T18720 x 3, 40T18723 x 3, 40T18724 x 3, 40T18741 x 3, 40T18742 x 3, 40T18778 x 3, 40T18779 x 6, 40T18780 x 6, 40T18781 x 6, 40T18782, 40T18783 x 3, 40T18784 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $51200=2^{11} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.