Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $63$ | |
| Group : | $C_4\times A_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,17,4,10,11,6,7,13,20,2,15,18,3,9,12,5,8,14,19), (1,6,18,9,13,2,5,17,10,14)(3,12,16,7,20,4,11,15,8,19) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 60: $A_5$ 120: $A_5\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: $A_5$
Degree 10: $A_5\times C_2$
Low degree siblings
24T574, 24T575, 40T174, 40T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $3$ | $( 5,10,18)( 6, 9,17)( 7,15,19)( 8,16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 8)( 4, 7)( 5,10)( 6, 9)(13,18)(14,17)(15,19)(16,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 4)( 5, 9,18, 6,10,17)( 7,16,19, 8,15,20)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 9)( 6,10)(11,12)(13,17)(14,18)(15,20)(16,19)$ |
| $ 4, 4, 4, 4, 4 $ | $15$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,19,10,20)(11,14,12,13)(15,18,16,17)$ |
| $ 20 $ | $12$ | $20$ | $( 1, 3, 6, 7,10,11,14,15,18,20, 2, 4, 5, 8, 9,12,13,16,17,19)$ |
| $ 12, 4, 4 $ | $20$ | $12$ | $( 1, 3, 6,12,13,16, 2, 4, 5,11,14,15)( 7,18, 8,17)( 9,19,10,20)$ |
| $ 20 $ | $12$ | $20$ | $( 1, 3, 6,19,18,11,14,15,10, 8, 2, 4, 5,20,17,12,13,16, 9, 7)$ |
| $ 4, 4, 4, 4, 4 $ | $15$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,20,10,19)(11,13,12,14)(15,17,16,18)$ |
| $ 20 $ | $12$ | $20$ | $( 1, 4, 6, 8,10,12,14,16,18,19, 2, 3, 5, 7, 9,11,13,15,17,20)$ |
| $ 12, 4, 4 $ | $20$ | $12$ | $( 1, 4, 6,11,13,15, 2, 3, 5,12,14,16)( 7,17, 8,18)( 9,20,10,19)$ |
| $ 20 $ | $12$ | $20$ | $( 1, 4, 6,20,18,12,14,16,10, 7, 2, 3, 5,19,17,11,13,15, 9, 8)$ |
| $ 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 5,10,13,18)( 2, 6, 9,14,17)( 3, 8,11,16,20)( 4, 7,12,15,19)$ |
| $ 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 5,10,18,13)( 2, 6, 9,17,14)( 3,11,16,20, 8)( 4,12,15,19, 7)$ |
| $ 10, 10 $ | $12$ | $10$ | $( 1, 6,10,14,18, 2, 5, 9,13,17)( 3, 7,11,15,20, 4, 8,12,16,19)$ |
| $ 10, 10 $ | $12$ | $10$ | $( 1, 6,10,17,13, 2, 5, 9,18,14)( 3,12,16,19, 8, 4,11,15,20, 7)$ |
| $ 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,11, 2,12)( 3,14, 4,13)( 5,16, 6,15)( 7,18, 8,17)( 9,19,10,20)$ |
| $ 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1,12, 2,11)( 3,13, 4,14)( 5,15, 6,16)( 7,17, 8,18)( 9,20,10,19)$ |
Group invariants
| Order: | $240=2^{4} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [240, 92] |
| Character table: |
2 4 2 4 4 2 4 4 2 2 2 4 2 2 2 2 2 2 2 4 4
3 1 1 . 1 1 . . . 1 . . . 1 . . . . . 1 1
5 1 . . 1 . . . 1 . 1 . 1 . 1 1 1 1 1 1 1
1a 3a 2a 2b 6a 2c 4a 20a 12a 20b 4b 20c 12b 20d 5a 5b 10a 10b 4c 4d
2P 1a 3a 1a 1a 3a 1a 2b 10a 6a 10b 2b 10a 6a 10b 5b 5a 5b 5a 2b 2b
3P 1a 1a 2a 2b 2b 2c 4b 20d 4d 20c 4a 20b 4c 20a 5b 5a 10b 10a 4d 4c
5P 1a 3a 2a 2b 6a 2c 4a 4c 12a 4c 4b 4d 12b 4d 1a 1a 2b 2b 4c 4d
7P 1a 3a 2a 2b 6a 2c 4b 20d 12b 20c 4a 20b 12a 20a 5b 5a 10b 10a 4d 4c
11P 1a 3a 2a 2b 6a 2c 4b 20c 12b 20d 4a 20a 12a 20b 5a 5b 10a 10b 4d 4c
13P 1a 3a 2a 2b 6a 2c 4a 20b 12a 20a 4b 20d 12b 20c 5b 5a 10b 10a 4c 4d
17P 1a 3a 2a 2b 6a 2c 4a 20b 12a 20a 4b 20d 12b 20c 5b 5a 10b 10a 4c 4d
19P 1a 3a 2a 2b 6a 2c 4b 20c 12b 20d 4a 20a 12a 20b 5a 5b 10a 10b 4d 4c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1
X.3 1 1 1 -1 -1 -1 A A A A -A -A -A -A 1 1 -1 -1 A -A
X.4 1 1 1 -1 -1 -1 -A -A -A -A A A A A 1 1 -1 -1 -A A
X.5 3 . -1 -3 . 1 A B . C -A -B . -C *D D -*D -D E -E
X.6 3 . -1 -3 . 1 A C . B -A -C . -B D *D -D -*D E -E
X.7 3 . -1 -3 . 1 -A -C . -B A C . B D *D -D -*D -E E
X.8 3 . -1 -3 . 1 -A -B . -C A B . C *D D -*D -D -E E
X.9 3 . -1 3 . -1 -1 D . *D -1 D . *D *D D *D D 3 3
X.10 3 . -1 3 . -1 -1 *D . D -1 *D . D D *D D *D 3 3
X.11 3 . -1 3 . -1 1 -*D . -D 1 -*D . -D D *D D *D -3 -3
X.12 3 . -1 3 . -1 1 -D . -*D 1 -D . -*D *D D *D D -3 -3
X.13 4 1 . 4 1 . . -1 1 -1 . -1 1 -1 -1 -1 -1 -1 4 4
X.14 4 1 . 4 1 . . 1 -1 1 . 1 -1 1 -1 -1 -1 -1 -4 -4
X.15 4 1 . -4 -1 . . -A A -A . A -A A -1 -1 1 1 F -F
X.16 4 1 . -4 -1 . . A -A A . -A A -A -1 -1 1 1 -F F
X.17 5 -1 1 5 -1 1 1 . -1 . 1 . -1 . . . . . 5 5
X.18 5 -1 1 5 -1 1 -1 . 1 . -1 . 1 . . . . . -5 -5
X.19 5 -1 1 -5 1 -1 A . -A . -A . A . . . . . G -G
X.20 5 -1 1 -5 1 -1 -A . A . A . -A . . . . . -G G
A = -E(4)
= -Sqrt(-1) = -i
B = -E(20)-E(20)^9
C = -E(20)^13-E(20)^17
D = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
E = 3*E(4)
= 3*Sqrt(-1) = 3i
F = -4*E(4)
= -4*Sqrt(-1) = -4i
G = -5*E(4)
= -5*Sqrt(-1) = -5i
|