Properties

Label 20T561
Order \(30720\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $561$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,17,2,18)(3,20,4,19)(5,15,6,16)(7,13,8,14), (1,16,17,8,9)(2,15,18,7,10)(3,14,20,6,12)(4,13,19,5,11), (1,17,2,18)(3,20,4,19)(5,6)(7,8)(9,14,11,15)(10,13,12,16)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
60:  $A_5$
120:  $A_5\times C_2$
960:  $C_2^4 : A_5$ x 3
1920:  $C_2 \wr A_5$ x 3
15360:  20T468

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $A_5$

Degree 10: $C_2^4 : A_5$, $C_2 \wr A_5$ x 2

Low degree siblings

20T561 x 2, 40T14430 x 3, 40T14530 x 3, 40T14532 x 3, 40T14533 x 3, 40T14559 x 6, 40T14615

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 84 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $30720=2^{11} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.