Properties

Label 20T555
Order \(30720\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $555$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,17)(2,18)(3,19)(4,20)(9,13)(10,14)(11,16)(12,15), (1,10,20)(2,9,19)(3,12,18)(4,11,17)(5,15,6,16)(7,13,8,14)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
120:  $S_5$
1920:  $(C_2^4:A_5) : C_2$ x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$, $(C_2^4:A_5) : C_2$ x 2

Low degree siblings

20T555 x 2, 20T567, 40T14436 x 3, 40T14437 x 3, 40T14571 x 3, 40T14572 x 6, 40T14584 x 3, 40T14585 x 3, 40T14589, 40T14590 x 3, 40T14591 x 3, 40T14607

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $30720=2^{11} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.