Properties

Label 20T534
Order \(25600\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $534$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,9,3,17,12,5,20,13,7,2,15,10,4,18,11,6,19,14,8), (1,9,17,6,13,2,10,18,5,14)(19,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$
5:  $C_5$
10:  $D_{5}$, $C_{10}$
20:  20T1, 20T2
50:  $D_5\times C_5$
100:  20T25
12800:  20T455

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $D_5\times C_5$

Low degree siblings

20T534 x 2, 40T14315 x 3, 40T14333 x 3, 40T14335 x 6, 40T14337 x 12

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 88 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $25600=2^{10} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.