Properties

Label 20T53
Order \(200\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_5\times C_5:D_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $53$
Group :  $C_5\times C_5:D_4$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,9,20,7,17,5,15,4,14,2,12,10,19,8,18,6,16,3,13), (1,12)(2,11)(3,14)(4,13)(5,16)(6,15)(7,18)(8,17)(9,19)(10,20)
$|\Aut(F/K)|$:  $10$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
8:  $D_{4}$
10:  $D_{5}$, $C_{10}$ x 3
20:  $D_{10}$, 20T3
40:  20T7, 20T12
50:  $D_5\times C_5$
100:  20T24

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 5: None

Degree 10: $D_5\times C_5$

Low degree siblings

20T53 x 3, 40T152 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $200=2^{3} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [200, 31]
Character table: Data not available.