Properties

Label 20T466
Order \(15360\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $466$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,7,10,14,4,17,5,11,15)(2,19,8,9,13,3,18,6,12,16), (1,16)(2,15)(3,13)(4,14)(5,18,10,8,19,12,6,17,9,7,20,11), (1,8,17,2,7,18)(3,6,19)(4,5,20)(9,10)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
120:  $S_5$
240:  $S_5\times C_2$ x 3
480:  20T117
960:  20T174
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$ x 3
7680:  20T368

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$

Low degree siblings

20T466 x 3, 40T10563 x 4, 40T10564 x 4, 40T10584 x 2, 40T10598 x 2, 40T10599 x 2, 40T10639 x 4, 40T10640 x 4, 40T10641 x 4, 40T10642 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 90 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $15360=2^{10} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.