Properties

Label 20T462
Order \(15000\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $462$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,12,17)(2,9,11,16)(3,10,15,20)(4,6,14,19)(5,7,13,18), (1,2,3,4,5)(11,18,14,16,12,19,15,17,13,20)
$|\Aut(F/K)|$:  $5$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5:  $C_5$
6:  $S_3$
10:  $C_{10}$
24:  $S_4$
30:  $S_3 \times C_5$
120:  20T34
3000:  15T51

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 5: None

Degree 10: None

Low degree siblings

20T462 x 3, 30T875 x 2, 40T10520 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 190 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $15000=2^{3} \cdot 3 \cdot 5^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.