Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $45$ | |
| Group : | $C_2^4:D_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,6)(3,4)(7,9)(8,10)(11,15)(12,16)(13,14)(17,19)(18,20), (1,19,2,20)(3,17,14,8)(4,18,13,7)(5,16)(6,15)(9,12,10,11) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 10: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $(C_2^4 : C_5) : C_2$, $(C_2^4 : C_5) : C_2$ x 2
Low degree siblings
10T15 x 3, 10T16 x 3, 16T415, 20T38 x 6, 20T39, 20T43 x 3, 20T45 x 2, 32T2132, 40T143 x 3, 40T144 x 3, 40T145 x 6, 40T146Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 5,15)( 6,16)( 7,17)( 8,18)( 9,10)(13,14)(19,20)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $20$ | $4$ | $( 3, 9,13,19)( 4,10,14,20)( 5, 7,16,18)( 6, 8,15,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5,16)( 6,15)( 7,18)( 8,17)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,14)( 4,13)( 5, 6)( 7, 8)( 9,20)(10,19)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 2)( 3, 9)( 4,10)( 5, 8)( 6, 7)(11,12)(13,19)(14,20)(15,18)(16,17)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,19,16,10)( 6,20,15, 9)( 7,18)( 8,17)(11,13,12,14)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 3, 5, 8,19)( 2, 4, 6, 7,20)( 9,11,13,15,18)(10,12,14,16,17)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 3,11,13)( 2, 4,12,14)( 5,20, 6,19)( 7,17)( 8,18)( 9,15,10,16)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 5, 9,14,18)( 2, 6,10,13,17)( 3, 7,12,16,20)( 4, 8,11,15,19)$ |
Group invariants
| Order: | $160=2^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [160, 234] |
| Character table: |
2 5 5 3 5 5 3 3 . 3 .
5 1 . . . . . . 1 . 1
1a 2a 4a 2b 2c 2d 4b 5a 4c 5b
2P 1a 1a 2b 1a 1a 1a 2c 5b 2a 5a
3P 1a 2a 4a 2b 2c 2d 4b 5b 4c 5a
5P 1a 2a 4a 2b 2c 2d 4b 1a 4c 1a
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 1 1 -1 -1 1 -1 1
X.3 2 2 . 2 2 . . A . *A
X.4 2 2 . 2 2 . . *A . A
X.5 5 -3 -1 1 1 1 -1 . 1 .
X.6 5 -3 1 1 1 -1 1 . -1 .
X.7 5 1 -1 -3 1 -1 1 . 1 .
X.8 5 1 -1 1 -3 1 1 . -1 .
X.9 5 1 1 -3 1 1 -1 . -1 .
X.10 5 1 1 1 -3 -1 -1 . 1 .
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
|