Properties

Label 20T436
Order \(10240\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $436$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,5,16,9,3,19,7,14,12,2,17,6,15,10,4,20,8,13,11), (1,6,4,8)(2,5,3,7)(9,13)(10,14)(11,16,12,15)(17,18)(19,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
10:  $D_{5}$
20:  $D_{10}$
40:  20T6
160:  $(C_2^4 : C_5) : C_2$
320:  $C_2\times (C_2^4 : D_5)$
640:  20T144
5120:  40T3412

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $C_2\times (C_2^4 : D_5)$

Low degree siblings

20T436 x 7, 40T7862 x 2, 40T7896 x 4, 40T8154 x 2, 40T8188 x 4, 40T9301 x 2, 40T9328 x 4, 40T9335 x 4, 40T9446 x 4, 40T9447 x 2, 40T9454 x 2, 40T9470 x 4, 40T9575 x 2, 40T9599 x 2, 40T9635 x 4, 40T9642 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 76 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10240=2^{11} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.