Properties

Label 20T432
Order \(10240\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $432$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,8,16,10)(2,19,7,15,9)(3,18,5,14,12,4,17,6,13,11), (1,3)(2,4)(5,8)(6,7)(9,10)(13,16)(14,15)(17,20)(18,19), (1,6,10,20,14,3,7,12,18,16)(2,5,9,19,13,4,8,11,17,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
8:  $D_{4}$
10:  $C_{10}$ x 3
20:  20T3
40:  20T12
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$ x 3
320:  20T72
640:  20T130
2560:  20T257
5120:  20T304

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2 \times (C_2^4 : C_5)$

Low degree siblings

20T432 x 95, 40T6397 x 192, 40T6659 x 192, 40T7171 x 192, 40T7498 x 48, 40T7740 x 96, 40T8082 x 96, 40T9177 x 192, 40T9188 x 192, 40T9221 x 192, 40T9907 x 48, 40T9941 x 48

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 136 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10240=2^{11} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.