Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $427$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,2,4)(5,7,6,8)(9,10)(15,16)(17,19,18,20), (1,14,20,11,5,4,15,17,9,7)(2,13,19,12,6,3,16,18,10,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 5: $C_5$ 8: $D_{4}$ 10: $C_{10}$ x 3 20: 20T3 40: 20T12 80: $C_2^4 : C_5$ 160: $C_2 \times (C_2^4 : C_5)$ x 3 320: 20T72 640: 20T130 2560: 20T256 5120: 20T329 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_2 \times (C_2^4 : C_5)$
Low degree siblings
20T409 x 48, 20T427 x 47, 40T5881 x 24, 40T5942 x 48, 40T5943 x 48, 40T6403 x 96, 40T6647 x 96, 40T7167 x 96, 40T7428 x 24, 40T7430 x 48, 40T7431 x 96, 40T7432 x 96, 40T7433 x 96, 40T7499 x 24, 40T7739 x 48, 40T8085 x 48, 40T9225 x 96, 40T9227 x 96, 40T9239 x 96, 40T9912 x 24, 40T9919 x 48, 40T9932 x 96, 40T9933 x 96, 40T9935 x 96, 40T9942 x 48, 40T10013 x 48, 40T10014 x 48, 40T10015 x 96, 40T10016 x 96, 40T10017 x 192, 40T10018 x 192, 40T10019 x 192, 40T10020 x 192, 40T10021 x 192, 40T10022 x 192, 40T10166 x 48, 40T10167 x 48, 40T10168 x 96, 40T10169 x 96, 40T10170 x 96, 40T10171 x 96, 40T10172 x 96, 40T10173 x 192, 40T10174 x 192, 40T10175 x 192, 40T10176 x 192, 40T10177 x 192, 40T10178 x 192, 40T10179 x 192, 40T10180 x 192, 40T10181 x 192, 40T10182 x 192, 40T10183 x 192, 40T10184 x 192, 40T10185 x 192, 40T10186 x 192, 40T10187 x 192, 40T10188 x 192, 40T10189 x 192, 40T10190 x 192, 40T10191 x 192, 40T10192 x 192, 40T10193 x 192, 40T10194 x 192, 40T10195 x 192, 40T10196 x 192, 40T10197 x 192, 40T10255 x 48, 40T10256 x 48, 40T10266 x 96, 40T10271 x 96, 40T10280 x 96, 40T10281 x 96, 40T10293 x 96, 40T10303 x 192, 40T10304 x 192, 40T10305 x 192, 40T10306 x 192, 40T10307 x 192, 40T10308 x 192, 40T10309 x 192, 40T10310 x 192, 40T10311 x 192, 40T10312 x 192, 40T10313 x 192, 40T10314 x 192, 40T10315 x 192, 40T10316 x 192, 40T10317 x 192, 40T10318 x 192, 40T10319 x 192, 40T10320 x 192, 40T10321 x 192, 40T10322 x 192, 40T10323 x 192, 40T10324 x 192, 40T10325 x 192, 40T10326 x 192, 40T10327 x 192Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 136 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $10240=2^{11} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |