Properties

Label 20T426
Order \(10240\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $426$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15,10,3,17,11,5,19,14,7,2,16,9,4,18,12,6,20,13,8), (1,5)(2,6)(7,19,8,20)(9,18,10,17)(11,15,12,16)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
10:  $D_{5}$
20:  $D_{10}$
40:  20T6
160:  $(C_2^4 : C_5) : C_2$
320:  $C_2\times (C_2^4 : D_5)$
640:  20T144
5120:  20T328

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $D_{10}$

Low degree siblings

20T404 x 12, 20T426 x 11, 40T5890 x 6, 40T5894 x 6, 40T5897 x 6, 40T5915 x 12, 40T5916 x 12, 40T7861 x 6, 40T7882 x 6, 40T7886 x 6, 40T7895 x 12, 40T8128 x 6, 40T8145 x 6, 40T8193 x 12, 40T8196 x 12, 40T9314 x 6, 40T9332 x 12, 40T9432 x 6, 40T9451 x 6, 40T9462 x 6, 40T9612 x 6, 40T9638 x 12, 40T10153 x 12, 40T10154 x 12, 40T10155 x 24, 40T10156 x 24, 40T10229 x 12, 40T10230 x 12, 40T10234 x 12, 40T10236 x 12, 40T10242 x 12, 40T10244 x 12, 40T10247 x 24, 40T10335 x 12, 40T10338 x 12, 40T10343 x 12, 40T10348 x 12, 40T10352 x 12, 40T10354 x 12, 40T10357 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 100 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10240=2^{11} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.