Properties

Label 20T423
Order \(10240\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $423$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20)(2,19)(3,17,4,18)(5,15,6,16)(7,13)(8,14)(9,11)(10,12), (1,4,2,3)(5,19)(6,20)(7,18,8,17)(9,16)(10,15)(11,14,12,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
10:  $D_{5}$
20:  $D_{10}$
40:  20T7
160:  $(C_2^4 : C_5) : C_2$ x 5
320:  $C_2\times (C_2^4 : D_5)$ x 5
640:  20T136 x 5
2560:  20T240
5120:  20T307

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $D_5$

Low degree siblings

20T408 x 180, 20T423 x 35, 40T5905 x 18, 40T5939 x 36, 40T5940 x 36, 40T7326 x 720, 40T7327 x 720, 40T7345 x 90, 40T7346 x 90, 40T7347 x 180, 40T7881 x 90, 40T7884 x 90, 40T8169 x 90, 40T8182 x 90, 40T9330 x 180, 40T9424 x 720, 40T9425 x 720, 40T9460 x 90, 40T9467 x 180, 40T9472 x 180, 40T9631 x 180, 40T10084 x 720, 40T10087 x 720, 40T10105 x 360, 40T10106 x 360, 40T10107 x 720, 40T10108 x 720, 40T10109 x 720, 40T10110 x 720, 40T10111 x 180, 40T10112 x 180, 40T10113 x 360, 40T10114 x 360, 40T10157 x 36, 40T10158 x 72, 40T10159 x 144, 40T10160 x 180, 40T10161 x 360, 40T10162 x 360, 40T10163 x 360, 40T10164 x 720, 40T10218 x 720, 40T10363 x 36, 40T10366 x 72, 40T10370 x 144, 40T10372 x 180, 40T10377 x 360, 40T10379 x 360, 40T10380 x 360, 40T10381 x 720, 40T10382 x 720

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 160 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10240=2^{11} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.