Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $42$ | |
| Group : | $D_4\times F_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,2,17)(3,16,4,15)(5,13,6,14)(7,11,8,12)(9,19,10,20), (1,2)(3,7,9,5)(4,8,10,6)(11,13,20,18)(12,14,19,17), (1,20,3,14)(2,19,4,13)(5,18,9,16)(6,17,10,15)(7,11,8,12) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 2, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$, $Q_8:C_2$, $C_4\times C_2^2$ 20: $F_5$ 32: $C_4 \times D_4$ 40: $F_{5}\times C_2$ x 3 80: 20T16 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$
Low degree siblings
20T42 x 3, 40T109 x 2, 40T110 x 2, 40T112, 40T118 x 2, 40T119 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $10$ | $4$ | $( 3, 6, 9, 8)( 4, 5,10, 7)(11,17,20,14)(12,18,19,13)(15,16)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $5$ | $4$ | $( 3, 6, 9, 8)( 4, 5,10, 7)(11,18,20,13)(12,17,19,14)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $5$ | $4$ | $( 3, 8, 9, 6)( 4, 7,10, 5)(11,13,20,18)(12,14,19,17)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $10$ | $4$ | $( 3, 8, 9, 6)( 4, 7,10, 5)(11,14,20,17)(12,13,19,18)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $10$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,19)(12,20)(13,17)(14,18)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 9)( 4,10)( 5, 7)( 6, 8)(11,20)(12,19)(13,18)(14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 2)( 3, 5, 9, 7)( 4, 6,10, 8)(11,17,20,14)(12,18,19,13)(15,16)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $5$ | $4$ | $( 1, 2)( 3, 7, 9, 5)( 4, 8,10, 6)(11,14,20,17)(12,13,19,18)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7)(11,19)(12,20)(13,17)(14,18)(15,16)$ |
| $ 10, 5, 5 $ | $8$ | $10$ | $( 1, 3, 5, 8,10, 2, 4, 6, 7, 9)(11,13,15,18,20)(12,14,16,17,19)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 3, 5, 8,10, 2, 4, 6, 7, 9)(11,14,15,17,20,12,13,16,18,19)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 4, 5, 7,10)( 2, 3, 6, 8, 9)(11,13,15,18,20)(12,14,16,17,19)$ |
| $ 20 $ | $8$ | $20$ | $( 1,11, 3,14, 5,15, 8,17,10,20, 2,12, 4,13, 6,16, 7,18, 9,19)$ |
| $ 10, 10 $ | $8$ | $10$ | $( 1,11, 4,13, 5,15, 7,18,10,20)( 2,12, 3,14, 6,16, 8,17, 9,19)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1,11, 9,17)( 2,12,10,18)( 3,16, 7,13)( 4,15, 8,14)( 5,20, 6,19)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $10$ | $4$ | $( 1,11,10,18)( 2,12, 9,17)( 3,16, 8,14)( 4,15, 7,13)( 5,20)( 6,19)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $10$ | $4$ | $( 1,11, 5,13)( 2,12, 6,14)( 3,17)( 4,18)( 7,20,10,15)( 8,19, 9,16)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1,11, 6,14)( 2,12, 5,13)( 3,17, 4,18)( 7,20, 9,16)( 8,19,10,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1,11)( 2,12)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1,11, 2,12)( 3,19, 4,20)( 5,18, 6,17)( 7,15, 8,16)( 9,14,10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1,15)( 2,16)( 3,17)( 4,18)( 5,20)( 6,19)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 2,16)( 3,17, 4,18)( 5,20, 6,19)( 7,11, 8,12)( 9,14,10,13)$ |
Group invariants
| Order: | $160=2^{5} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [160, 207] |
| Character table: Data not available. |