Properties

Label 20T418
Order \(10240\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $418$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,11,18,13,4,8,9,20,16,2,5,12,17,14,3,7,10,19,15), (1,14,3,16,2,13,4,15)(5,20,8,18,6,19,7,17)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
10:  $D_{5}$
20:  $D_{10}$
40:  20T6
160:  $(C_2^4 : C_5) : C_2$
320:  $C_2\times (C_2^4 : D_5)$
640:  20T144
2560:  20T244
5120:  20T313

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $C_2\times (C_2^4 : D_5)$

Low degree siblings

20T418 x 23, 40T7828 x 6, 40T7874 x 12, 40T8130 x 6, 40T8172 x 12, 40T9305 x 12, 40T9327 x 24, 40T9430 x 6, 40T9442 x 12, 40T9458 x 12, 40T9582 x 12, 40T9630 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 208 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10240=2^{11} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.