Properties

Label 20T412
Order \(10240\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $412$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7)(2,8)(3,6)(4,5)(9,14,11,15)(10,13,12,16)(17,18)(19,20), (1,6,4,8)(2,5,3,7)(9,14,11,15)(10,13,12,16)(17,18)(19,20), (5,13,7,16)(6,14,8,15)(9,17,11,20)(10,18,12,19)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
10:  $D_{5}$
20:  $D_{10}$ x 3
40:  20T8
160:  $(C_2^4 : C_5) : C_2$ x 5
320:  $C_2\times (C_2^4 : D_5)$ x 15
640:  20T141 x 5
2560:  20T240
5120:  20T307 x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $C_2\times (C_2^4 : D_5)$ x 3

Low degree siblings

20T412 x 719, 40T5903 x 54, 40T7903 x 1080, 40T8176 x 540, 40T8199 x 1080, 40T9339 x 1080, 40T9420 x 1080, 40T9423 x 2160, 40T9457 x 270, 40T9459 x 540, 40T9473 x 180, 40T9619 x 540, 40T9644 x 1080, 40T9972 x 2160, 40T10151 x 1440, 40T10152 x 1440, 40T10205 x 2160, 40T10361 x 36, 40T10365 x 216, 40T10368 x 540, 40T10373 x 360, 40T10376 x 1080

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 208 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10240=2^{11} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.