Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $375$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,18,5,15,12,4,19,7,14,9,2,17,6,16,11,3,20,8,13,10), (1,12)(2,11)(3,9)(4,10)(7,8)(13,14)(17,18), (1,12)(2,11)(3,9)(4,10)(5,20,14,6,19,13)(7,17,16)(8,18,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ 120: $S_5$ 240: $S_5\times C_2$ 480: 20T120 1920: $(C_2^4:A_5) : C_2$ 3840: $C_2 \wr S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $S_5$
Degree 10: $S_5\times C_2$
Low degree siblings
20T375, 40T5473 x 2, 40T5476 x 2, 40T5505, 40T5521 x 2, 40T5522 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 4 $ | $20$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,20,18,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $120$ | $2$ | $( 1,18)( 2,17)( 3,19)( 4,20)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1,17, 2,18)( 3,20, 4,19)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $40$ | $2$ | $( 1,18)( 2,17)( 3,19)( 4,20)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1,17, 2,18)( 3,20, 4,19)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $120$ | $4$ | $( 1,20, 2,19)( 3,18, 4,17)( 5, 6)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $120$ | $2$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5, 6)(11,12)(15,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1,20, 2,19)( 3,18, 4,17)( 5, 6)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5, 6)(11,12)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $120$ | $4$ | $( 1,19, 2,20)( 3,18, 4,17)( 5,12)( 6,11)( 7, 9)( 8,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 1,20)( 2,19)( 3,17)( 4,18)( 5,12)( 6,11)( 7, 9)( 8,10)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1,19, 2,20)( 3,18, 4,17)( 5,12)( 6,11)( 7, 9)( 8,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1,20)( 2,19)( 3,17)( 4,18)( 5,12)( 6,11)( 7, 9)( 8,10)(13,14)(15,16)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $60$ | $4$ | $( 1,19, 2,20)( 3,18, 4,17)( 5,11, 6,12)( 7,10, 8, 9)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $60$ | $4$ | $( 1,19, 2,20)( 3,18, 4,17)( 5,11, 6,12)( 7,10, 8, 9)(13,14)(15,16)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $240$ | $4$ | $( 1,18, 2,17)( 3,20, 4,19)( 5, 9)( 6,10)( 7,11)( 8,12)(13,15,14,16)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1,17)( 2,18)( 3,19)( 4,20)( 5, 9)( 6,10)( 7,11)( 8,12)(13,15,14,16)$ |
| $ 4, 4, 4, 4, 4 $ | $120$ | $4$ | $( 1,18, 2,17)( 3,20, 4,19)( 5,10, 6, 9)( 7,12, 8,11)(13,15,14,16)$ |
| $ 3, 3, 3, 3, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,20,12)( 2,19,11)( 3,17,10)( 4,18, 9)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,19,11, 2,20,12)( 3,18, 9, 4,17,10)( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1, 1, 1 $ | $160$ | $6$ | $( 1,20,12)( 2,19,11)( 3,17,10)( 4,18, 9)( 5, 6)( 7, 8)$ |
| $ 6, 6, 2, 2, 1, 1, 1, 1 $ | $160$ | $6$ | $( 1,19,11, 2,20,12)( 3,18, 9, 4,17,10)( 5, 6)( 7, 8)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $80$ | $3$ | $( 1,20,12)( 2,19,11)( 3,17,10)( 4,18, 9)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1,19,11, 2,20,12)( 3,18, 9, 4,17,10)$ |
| $ 12, 4, 4 $ | $160$ | $12$ | $( 1,17,12, 4,20, 9, 2,18,11, 3,19,10)( 5, 7, 6, 8)(13,16,14,15)$ |
| $ 12, 4, 4 $ | $160$ | $12$ | $( 1,17,12, 4,20, 9, 2,18,11, 3,19,10)( 5, 7, 6, 8)(13,15,14,16)$ |
| $ 12, 4, 4 $ | $160$ | $12$ | $( 1,18,11, 3,20, 9, 2,17,12, 4,19,10)( 5, 7, 6, 8)(13,15,14,16)$ |
| $ 12, 4, 4 $ | $160$ | $12$ | $( 1,17,12, 4,20, 9, 2,18,11, 3,19,10)( 5, 8, 6, 7)(13,15,14,16)$ |
| $ 6, 6, 4, 4 $ | $320$ | $12$ | $( 1,18,11, 3,19, 9)( 2,17,12, 4,20,10)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $320$ | $6$ | $( 1,18,11, 3,19, 9)( 2,17,12, 4,20,10)( 5,16)( 6,15)( 7,14)( 8,13)$ |
| $ 6, 3, 3, 2, 2, 2, 2 $ | $320$ | $6$ | $( 1,20,12, 2,19,11)( 3,18,10)( 4,17, 9)( 5,14)( 6,13)( 7,15)( 8,16)$ |
| $ 6, 4, 4, 3, 3 $ | $320$ | $12$ | $( 1,20,12, 2,19,11)( 3,18,10)( 4,17, 9)( 5,13, 6,14)( 7,16, 8,15)$ |
| $ 8, 8, 2, 1, 1 $ | $480$ | $8$ | $( 1,19,11, 6, 2,20,12, 5)( 3,17, 9, 8, 4,18,10, 7)(13,14)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $480$ | $4$ | $( 1,20,12, 5)( 2,19,11, 6)( 3,18,10, 7)( 4,17, 9, 8)(13,14)$ |
| $ 8, 8, 2, 2 $ | $480$ | $8$ | $( 1,18,12, 8, 2,17,11, 7)( 3,19,10, 5, 4,20, 9, 6)(13,16)(14,15)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $480$ | $4$ | $( 1,17,11, 7)( 2,18,12, 8)( 3,20, 9, 6)( 4,19,10, 5)(13,16)(14,15)$ |
| $ 20 $ | $384$ | $20$ | $( 1,18,11, 7,14, 3,20, 9, 5,15, 2,17,12, 8,13, 4,19,10, 6,16)$ |
| $ 20 $ | $384$ | $20$ | $( 1,17,12, 8,13, 4,20, 9, 5,15, 2,18,11, 7,14, 3,19,10, 6,16)$ |
| $ 5, 5, 5, 5 $ | $384$ | $5$ | $( 1,20,11, 5,14)( 2,19,12, 6,13)( 3,17, 9, 8,15)( 4,18,10, 7,16)$ |
| $ 10, 10 $ | $384$ | $10$ | $( 1,19,12, 6,13, 2,20,11, 5,14)( 3,18,10, 7,16, 4,17, 9, 8,15)$ |
Group invariants
| Order: | $7680=2^{9} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |