Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $37$ | |
| Group : | $D_5\times A_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,2,13,4,14)(3,15)(5,12,6,9,8,10)(7,11)(17,20,18), (1,8,9,16,17,4,5,12,13,20)(2,7,10,15,18,3,6,11,14,19) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $C_6$ 10: $D_{5}$ 12: $A_4$ 24: $A_4\times C_2$ 30: $D_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $A_4$
Degree 5: $D_{5}$
Degree 10: None
Low degree siblings
30T20, 30T28, 40T65Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,17)( 6,18)( 7,19)( 8,20)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 3, 4)( 6, 7, 8)(10,11,12)(14,15,16)(18,19,20)$ |
| $ 6, 6, 3, 2, 2, 1 $ | $20$ | $6$ | $( 2, 3, 4)( 5,17)( 6,19, 8,18, 7,20)( 9,13)(10,15,12,14,11,16)$ |
| $ 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ | $4$ | $3$ | $( 2, 4, 3)( 6, 8, 7)(10,12,11)(14,16,15)(18,20,19)$ |
| $ 6, 6, 3, 2, 2, 1 $ | $20$ | $6$ | $( 2, 4, 3)( 5,17)( 6,20, 7,18, 8,19)( 9,13)(10,16,11,14,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7,20)( 8,19)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5, 9,13,17)( 2, 6,10,14,18)( 3, 7,11,15,19)( 4, 8,12,16,20)$ |
| $ 15, 5 $ | $8$ | $15$ | $( 1, 5, 9,13,17)( 2, 7,12,14,19, 4, 6,11,16,18, 3, 8,10,15,20)$ |
| $ 15, 5 $ | $8$ | $15$ | $( 1, 5, 9,13,17)( 2, 8,11,14,20, 3, 6,12,15,18, 4, 7,10,16,19)$ |
| $ 10, 10 $ | $6$ | $10$ | $( 1, 6, 9,14,17, 2, 5,10,13,18)( 3, 8,11,16,19, 4, 7,12,15,20)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 9,17, 5,13)( 2,10,18, 6,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$ |
| $ 15, 5 $ | $8$ | $15$ | $( 1, 9,17, 5,13)( 2,11,20, 6,15, 4,10,19, 8,14, 3,12,18, 7,16)$ |
| $ 15, 5 $ | $8$ | $15$ | $( 1, 9,17, 5,13)( 2,12,19, 6,16, 3,10,20, 7,14, 4,11,18, 8,15)$ |
| $ 10, 10 $ | $6$ | $10$ | $( 1,10,17, 6,13, 2, 9,18, 5,14)( 3,12,19, 8,15, 4,11,20, 7,16)$ |
Group invariants
| Order: | $120=2^{3} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [120, 39] |
| Character table: |
2 3 3 1 1 1 1 3 3 2 . . 2 2 . . 2
3 1 1 1 1 1 1 . . 1 1 1 . 1 1 1 .
5 1 . 1 . 1 . 1 . 1 1 1 1 1 1 1 1
1a 2a 3a 6a 3b 6b 2b 2c 5a 15a 15b 10a 5b 15c 15d 10b
2P 1a 1a 3b 3b 3a 3a 1a 1a 5b 15d 15c 5b 5a 15b 15a 5a
3P 1a 2a 1a 2a 1a 2a 2b 2c 5b 5b 5b 10b 5a 5a 5a 10a
5P 1a 2a 3b 6b 3a 6a 2b 2c 1a 3b 3a 2b 1a 3b 3a 2b
7P 1a 2a 3a 6a 3b 6b 2b 2c 5b 15c 15d 10b 5a 15a 15b 10a
11P 1a 2a 3b 6b 3a 6a 2b 2c 5a 15b 15a 10a 5b 15d 15c 10b
13P 1a 2a 3a 6a 3b 6b 2b 2c 5b 15c 15d 10b 5a 15a 15b 10a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1 1 -1 1 1 1 1 1 1 1 1
X.3 1 -1 A -A /A -/A 1 -1 1 A /A 1 1 A /A 1
X.4 1 -1 /A -/A A -A 1 -1 1 /A A 1 1 /A A 1
X.5 1 1 A A /A /A 1 1 1 A /A 1 1 A /A 1
X.6 1 1 /A /A A A 1 1 1 /A A 1 1 /A A 1
X.7 2 . 2 . 2 . 2 . C C C C *C *C *C *C
X.8 2 . 2 . 2 . 2 . *C *C *C *C C C C C
X.9 2 . B . /B . 2 . C E /E C *C F /F *C
X.10 2 . /B . B . 2 . C /E E C *C /F F *C
X.11 2 . B . /B . 2 . *C F /F *C C E /E C
X.12 2 . /B . B . 2 . *C /F F *C C /E E C
X.13 3 -3 . . . . -1 1 3 . . -1 3 . . -1
X.14 3 3 . . . . -1 -1 3 . . -1 3 . . -1
X.15 6 . . . . . -2 . D . . -C *D . . -*C
X.16 6 . . . . . -2 . *D . . -*C D . . -C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
C = E(5)+E(5)^4
= (-1+Sqrt(5))/2 = b5
D = 3*E(5)+3*E(5)^4
= (-3+3*Sqrt(5))/2 = 3b5
E = E(15)^7+E(15)^13
F = E(15)+E(15)^4
|