Properties

Label 20T369
Order \(7680\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $369$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,4)(5,11)(6,12)(7,10)(8,9)(13,14)(15,16)(17,18)(19,20), (1,9,19,3,11,18,2,10,20,4,12,17)(5,7,6,8)(13,15,14,16), (1,3,2,4)(5,15,19,7,13,18,6,16,20,8,14,17)(9,11,10,12)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
120:  $S_5$
240:  $S_5\times C_2$
480:  20T123
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$

Low degree siblings

20T369, 40T5472 x 2, 40T5475 x 2, 40T5504, 40T5535 x 2, 40T5536 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $7680=2^{9} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.