Properties

Label 20T368
Order \(7680\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $368$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20), (1,3,9)(2,4,10)(5,7,15,17)(6,8,16,18)(11,13,19)(12,14,20), (1,11)(2,12)(3,6)(4,5)(7,8)(9,19)(10,20)(13,15)(14,16)(17,18)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
120:  $S_5$
240:  $S_5\times C_2$ x 3
480:  20T117
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$ x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$, $C_2 \wr S_5$ x 2

Low degree siblings

20T368 x 11, 40T5478 x 12, 40T5479 x 12, 40T5491 x 24, 40T5507 x 3, 40T5512 x 4, 40T5513 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $7680=2^{9} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.