Show commands:
Magma
magma: G := TransitiveGroup(20, 36);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2\times A_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,20,13)(2,19,14)(3,6,7)(4,5,8)(9,17,12)(10,18,11), (1,20,18,11,8,2,19,17,12,7)(3,16,6,9,14,4,15,5,10,13) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $60$: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: $A_{5}$
Low degree siblings
10T11, 12T75, 12T76, 20T31, 24T203, 30T29, 30T30, 40T61Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 1,18)( 2,17)( 3,15)( 4,16)( 5,13)( 6,14)( 7,11)( 8,12)$ |
2C | $2^{10}$ | $15$ | $2$ | $10$ | $( 1,17)( 2,18)( 3,16)( 4,15)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)(19,20)$ |
3A | $3^{6},1^{2}$ | $20$ | $3$ | $12$ | $( 1,20,13)( 2,19,14)( 3, 6, 7)( 4, 5, 8)( 9,17,12)(10,18,11)$ |
5A1 | $5^{4}$ | $12$ | $5$ | $16$ | $( 1,12, 3,16, 6)( 2,11, 4,15, 5)( 7, 9,18,19,13)( 8,10,17,20,14)$ |
5A2 | $5^{4}$ | $12$ | $5$ | $16$ | $( 1, 3, 6,12,16)( 2, 4, 5,11,15)( 7,18,13, 9,19)( 8,17,14,10,20)$ |
6A | $6^{3},2$ | $20$ | $6$ | $16$ | $( 1,19,13, 2,20,14)( 3, 5, 7, 4, 6, 8)( 9,18,12,10,17,11)(15,16)$ |
10A1 | $10^{2}$ | $12$ | $10$ | $18$ | $( 1, 4, 6,11,16, 2, 3, 5,12,15)( 7,17,13,10,19, 8,18,14, 9,20)$ |
10A3 | $10^{2}$ | $12$ | $10$ | $18$ | $( 1,11, 3,15, 6, 2,12, 4,16, 5)( 7,10,18,20,13, 8, 9,17,19,14)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.35 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 10A1 | 10A3 | ||
Size | 1 | 1 | 15 | 15 | 20 | 12 | 12 | 20 | 12 | 12 | |
2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 5A1 | 5A2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2A | 10A3 | 10A1 | |
5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 2A | 2A | |
Type | |||||||||||
120.35.1a | R | ||||||||||
120.35.1b | R | ||||||||||
120.35.3a1 | R | ||||||||||
120.35.3a2 | R | ||||||||||
120.35.3b1 | R | ||||||||||
120.35.3b2 | R | ||||||||||
120.35.4a | R | ||||||||||
120.35.4b | R | ||||||||||
120.35.5a | R | ||||||||||
120.35.5b | R |
magma: CharacterTable(G);