Properties

Label 20T350
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $350$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16)(2,15)(3,13,4,14)(5,11,6,12)(7,9)(8,10)(17,19,18,20), (1,13,5,18,9)(2,14,6,17,10)(3,16,8,20,12)(4,15,7,19,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$
10:  $D_{5}$
20:  20T2
160:  $(C_2^4 : C_5) : C_2$ x 5
320:  20T82 x 5
2560:  20T240

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $D_5$

Low degree siblings

20T334 x 90, 20T350 x 17, 40T3054 x 18, 40T4349 x 360, 40T4351 x 360, 40T4372 x 90, 40T4375 x 90, 40T4379 x 90, 40T4551 x 90, 40T4886 x 360, 40T4910 x 90, 40T4911 x 180, 40T4912 x 180, 40T4913 x 360, 40T4914 x 360, 40T5040 x 18, 40T5042 x 36, 40T5044 x 72, 40T5046 x 90, 40T5048 x 180, 40T5049 x 180, 40T5050 x 180, 40T5053 x 360, 40T5056 x 360

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.