Show commands:
Magma
magma: G := TransitiveGroup(20, 35);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,4)(5,13)(6,14)(7,8)(9,10)(11,12)(15,17)(16,18), (1,6,10,14,18)(2,5,9,13,17)(3,8,11,16,19)(4,7,12,15,20) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 24T202, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1^{2}$ | $10$ | $2$ | $9$ | $( 1, 3)( 2, 4)( 5,13)( 6,14)( 7, 8)( 9,10)(11,12)(15,17)(16,18)$ |
2B | $2^{10}$ | $15$ | $2$ | $10$ | $( 1, 2)( 3,16)( 4,15)( 5,12)( 6,11)( 7,13)( 8,14)( 9,19)(10,20)(17,18)$ |
3A | $3^{6},1^{2}$ | $20$ | $3$ | $12$ | $( 1, 4, 8)( 2, 3, 7)( 5,13,19)( 6,14,20)(11,15,18)(12,16,17)$ |
4A | $4^{5}$ | $30$ | $4$ | $15$ | $( 1,18, 2,17)( 3,10,16,20)( 4, 9,15,19)( 5, 7,12,13)( 6, 8,11,14)$ |
5A | $5^{4}$ | $24$ | $5$ | $16$ | $( 1,19,18,12, 7)( 2,20,17,11, 8)( 3,16, 6, 9,14)( 4,15, 5,10,13)$ |
6A | $6^{3},1^{2}$ | $20$ | $6$ | $15$ | $( 1, 5,16, 3,13,18)( 2, 6,15, 4,14,17)( 7,11, 9, 8,12,10)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
Type | ||||||||
120.34.1a | R | |||||||
120.34.1b | R | |||||||
120.34.4a | R | |||||||
120.34.4b | R | |||||||
120.34.5a | R | |||||||
120.34.5b | R | |||||||
120.34.6a | R |
magma: CharacterTable(G);