Properties

Label 20T347
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $347$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,9,14,18,2,5,10,13,17)(3,7,12,16,19,4,8,11,15,20), (3,4)(5,6)(9,10)(13,14)(15,16)(17,18), (1,15)(2,16)(3,13)(4,14)(5,11,6,12)(7,10,8,9)(17,19)(18,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
10:  $D_{5}$
20:  $D_{10}$
160:  $(C_2^4 : C_5) : C_2$ x 5
320:  $C_2\times (C_2^4 : D_5)$ x 5
2560:  20T240

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $D_5$

Low degree siblings

20T307 x 90, 20T322 x 180, 20T347 x 17, 20T348 x 180, 40T3062 x 18, 40T3456 x 360, 40T3496 x 45, 40T3500 x 30, 40T4350 x 360, 40T4352 x 360, 40T4376 x 90, 40T4380 x 90, 40T4382 x 90, 40T4547 x 45, 40T4556 x 90, 40T4730 x 180, 40T4756 x 180, 40T4771 x 60, 40T4826 x 360, 40T4866 x 90, 40T4867 x 180, 40T4870 x 180, 40T4871 x 360, 40T4872 x 360, 40T4931 x 180, 40T4943 x 180, 40T4944 x 180, 40T4987 x 180, 40T4996 x 180, 40T5004 x 360, 40T5020 x 180, 40T5025 x 720, 40T5039 x 18, 40T5041 x 36, 40T5043 x 72, 40T5045 x 90, 40T5047 x 180, 40T5051 x 180, 40T5052 x 180, 40T5054 x 360, 40T5055 x 180

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.