Properties

Label 20T344
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $344$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,9,4,17,12,5,19,14,7,2,15,10,3,18,11,6,20,13,8), (1,2)(11,12)(13,14)(17,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$
5:  $C_5$
10:  $C_{10}$
20:  20T1
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$
320:  20T75
2560:  20T256

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_{10}$

Low degree siblings

20T333 x 24, 20T344 x 23, 40T3051 x 24, 40T3956 x 48, 40T4002 x 48, 40T4321 x 48, 40T4511 x 24, 40T4518 x 48, 40T4520 x 48, 40T4526 x 48, 40T4533 x 24, 40T4695 x 24, 40T4812 x 24, 40T4813 x 48, 40T4814 x 96, 40T4815 x 96, 40T4816 x 96, 40T5057 x 24, 40T5060 x 24, 40T5061 x 48, 40T5064 x 48, 40T5066 x 48, 40T5067 x 48, 40T5070 x 48, 40T5071 x 96, 40T5074 x 96, 40T5075 x 96, 40T5078 x 96, 40T5079 x 96, 40T5082 x 96, 40T5083 x 96, 40T5085 x 96, 40T5088 x 96, 40T5090 x 96, 40T5091 x 96, 40T5093 x 96, 40T5096 x 96, 40T5097 x 96, 40T5100 x 96, 40T5101 x 96, 40T5104 x 96, 40T5105 x 96, 40T5108 x 96, 40T5109 x 96, 40T5112 x 96, 40T5113 x 96, 40T5115 x 96, 40T5118 x 96, 40T5120 x 96

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 80 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.