Properties

Label 20T341
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $341$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15,17,5,10,4,13,19,8,11)(2,16,18,6,9,3,14,20,7,12), (1,9,8,19,14,2,10,7,20,13)(3,11,6,18,15,4,12,5,17,16), (1,16,17,6,9,4,14,19,7,12)(2,15,18,5,10,3,13,20,8,11)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
10:  $C_{10}$ x 3
20:  20T3
80:  $C_2^4 : C_5$ x 17
160:  $C_2 \times (C_2^4 : C_5)$ x 51
320:  20T72 x 17
1280:  20T190
2560:  20T263 x 3

Resolvents shown for degrees $\leq 23$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2 \times (C_2^4 : C_5)$ x 3

Low degree siblings

20T341 x 12239

Siblings are shown with degree $\leq 23$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 224 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.