Properties

Label 20T340
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $340$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,18,6,14,2,9,17,5,13)(3,12,20,7,15,4,11,19,8,16), (1,3,6,7,10,12,14,16,18,19)(2,4,5,8,9,11,13,15,17,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
10:  $C_{10}$ x 3
20:  20T3
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$ x 3
320:  20T72
2560:  20T256

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_{10}$

Low degree siblings

20T329 x 24, 20T340 x 23, 40T3058 x 24, 40T3245 x 48, 40T3322 x 24, 40T3405 x 12, 40T3529 x 192, 40T4007 x 48, 40T4064 x 96, 40T4291 x 24, 40T4394 x 48, 40T4510 x 24, 40T4519 x 48, 40T4524 x 48, 40T4525 x 48, 40T4535 x 24, 40T4578 x 48, 40T4691 x 12, 40T4953 x 24, 40T4954 x 48, 40T4957 x 96, 40T4958 x 96, 40T4959 x 96, 40T5058 x 24, 40T5059 x 24, 40T5062 x 48, 40T5063 x 48, 40T5065 x 48, 40T5068 x 48, 40T5069 x 48, 40T5072 x 96, 40T5073 x 96, 40T5076 x 96, 40T5077 x 96, 40T5080 x 96, 40T5081 x 96, 40T5084 x 96, 40T5086 x 96, 40T5087 x 96, 40T5089 x 96, 40T5092 x 96, 40T5094 x 96, 40T5095 x 96, 40T5098 x 96, 40T5099 x 96, 40T5102 x 96, 40T5103 x 96, 40T5106 x 96, 40T5107 x 96, 40T5110 x 96, 40T5111 x 96, 40T5114 x 96, 40T5116 x 96, 40T5117 x 96, 40T5119 x 96

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 80 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.