Properties

Label 20T335
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $335$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,6,18,14,3,10,8,20,15,2,11,5,17,13,4,9,7,19,16), (1,7,16,12,20)(2,8,15,11,19)(3,6,14,10,17)(4,5,13,9,18)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
4:  $C_4$
5:  $C_5$
10:  $C_{10}$
20:  20T1
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$
320:  20T75
1280:  20T193
2560:  20T250

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2 \times (C_2^4 : C_5)$

Low degree siblings

20T335 x 47, 40T4014 x 96, 40T4039 x 96, 40T4308 x 96, 40T4506 x 24, 40T4697 x 48

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 224 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.