Properties

Label 20T331
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $331$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,12,16,5,4,17,9,13,7)(2,19,11,15,6,3,18,10,14,8), (1,9,5,17,13,4,12,8,19,15)(2,10,6,18,14,3,11,7,20,16), (1,14,18,5,9)(2,13,17,6,10)(3,15,19,8,11)(4,16,20,7,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
10:  $C_{10}$ x 3
20:  20T3
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$ x 3
320:  20T72
2560:  20T251

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2 \times (C_2^4 : C_5)$

Low degree siblings

20T331 x 7, 20T336 x 8, 40T3242 x 8, 40T3247 x 8, 40T3265 x 2, 40T3268 x 2, 40T3319 x 4, 40T3320 x 4, 40T3376 x 2, 40T3379 x 2, 40T3407 x 4, 40T3531 x 32, 40T3532 x 32, 40T3882 x 4, 40T3969 x 8, 40T3976 x 8, 40T3988 x 8, 40T4005 x 8, 40T4019 x 8, 40T4031 x 8, 40T4062 x 16, 40T4063 x 16, 40T4068 x 2, 40T4072 x 2, 40T4076 x 2, 40T4084 x 2, 40T4209 x 4, 40T4292 x 4, 40T4293 x 4, 40T4306 x 8, 40T4323 x 8, 40T4396 x 16, 40T4509 x 4, 40T4513 x 4, 40T4580 x 16, 40T4694 x 4, 40T4719 x 8, 40T4741 x 16, 40T4806 x 16, 40T4807 x 16, 40T4809 x 32, 40T4810 x 32, 40T4956 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.