Properties

Label 20T326
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $326$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,11,19,15,2,5,12,20,16)(3,7,10,17,14)(4,8,9,18,13), (3,4)(7,8)(9,11)(10,12)(13,14)(17,20)(18,19)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
10:  $C_{10}$ x 3
20:  20T3
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$ x 3
320:  20T72
2560:  20T257

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2^4 : C_5$

Low degree siblings

20T304 x 24, 20T326 x 23, 40T3244 x 48, 40T3321 x 24, 40T3406 x 12, 40T3530 x 192, 40T3967 x 48, 40T4015 x 48, 40T4016 x 48, 40T4061 x 96, 40T4290 x 24, 40T4325 x 48, 40T4395 x 48, 40T4534 x 24, 40T4579 x 48, 40T4693 x 12, 40T4699 x 24, 40T4740 x 48, 40T4805 x 96, 40T4808 x 192, 40T4955 x 48

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 80 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.