Properties

Label 20T313
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $313$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,4,16,2,13,3,15)(5,18)(6,17)(7,19)(8,20)(9,12,10,11), (1,4,2,3)(5,16,7,13,6,15,8,14)(9,17,10,18)(11,19,12,20)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
10:  $D_{5}$
20:  $D_{10}$
160:  $(C_2^4 : C_5) : C_2$
320:  $C_2\times (C_2^4 : D_5)$
2560:  20T244

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $(C_2^4 : C_5) : C_2$

Low degree siblings

20T313 x 11, 20T319 x 6, 20T327 x 6, 40T3458 x 24, 40T3492 x 6, 40T3495 x 3, 40T3497 x 6, 40T4367 x 6, 40T4371 x 6, 40T4381 x 6, 40T4540 x 6, 40T4545 x 3, 40T4546 x 6, 40T4548 x 6, 40T4725 x 12, 40T4751 x 12, 40T4752 x 12, 40T4761 x 12, 40T4821 x 12, 40T4923 x 12, 40T4926 x 12, 40T4930 x 12, 40T4985 x 12, 40T4998 x 12, 40T5006 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.