Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $310$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,14,5,20,2,9,13,6,19)(3,11,16,7,18,4,12,15,8,17), (5,8,6,7)(9,11,10,12)(13,15,14,16)(17,19)(18,20) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 5: $C_5$ 10: $C_{10}$ 80: $C_2^4 : C_5$ 160: $C_2 \times (C_2^4 : C_5)$, 32T2134 x 2 2560: 40T1862 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_2^4 : C_5$
Low degree siblings
20T310 x 7, 20T314 x 8, 40T3228 x 2, 40T3230 x 2, 40T3241 x 4, 40T3246 x 4, 40T3253 x 4, 40T3255 x 4, 40T3326 x 4, 40T3327 x 4, 40T3410 x 4, 40T3574 x 2, 40T3908 x 2, 40T3936 x 2, 40T3979 x 4, 40T3980 x 4, 40T3984 x 4, 40T3995 x 4, 40T4003 x 4, 40T4009 x 4, 40T4013 x 4, 40T4021 x 4, 40T4022 x 4, 40T4027 x 4, 40T4041 x 8, 40T4168 x 2, 40T4297 x 4, 40T4299 x 4, 40T4304 x 4, 40T4315 x 4, 40T4317 x 4, 40T4328 x 4, 40T4517 x 4, 40T4532 x 4, 40T4704 x 4, 40T4705 x 4, 40T4717 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 7, 8)( 9,10)(11,12)(17,20)(18,19)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 7, 8)(17,20)(18,19)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,20)(18,19)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 7, 8)(13,14)(15,16)(17,20)(18,19)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $80$ | $4$ | $( 3, 4)( 7, 8)( 9,12,10,11)(13,14)(15,16)(17,19,18,20)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $80$ | $4$ | $( 3, 4)( 7, 8)( 9,12,10,11)(17,19,18,20)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $80$ | $4$ | $( 1, 4)( 2, 3)( 5, 6)( 9,11)(10,12)(13,16,14,15)(17,19)(18,20)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $80$ | $4$ | $( 1, 4)( 2, 3)( 5, 6)( 9,12)(10,11)(13,16,14,15)(17,19)(18,20)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1,14,20, 9, 6)( 2,13,19,10, 5)( 3,16,18,12, 8)( 4,15,17,11, 7)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,14,20, 9, 6, 2,13,19,10, 5)( 3,16,18,12, 8, 4,15,17,11, 7)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1,20, 6,14, 9)( 2,19, 5,13,10)( 3,18, 8,16,12)( 4,17, 7,15,11)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,20, 6,14, 9, 2,19, 5,13,10)( 3,18, 8,16,12, 4,17, 7,15,11)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 6, 9,20,14)( 2, 5,10,19,13)( 3, 8,12,18,16)( 4, 7,11,17,15)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1, 6, 9,20,14, 2, 5,10,19,13)( 3, 8,12,18,16, 4, 7,11,17,15)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 9,14, 6,20)( 2,10,13, 5,19)( 3,12,16, 8,18)( 4,11,15, 7,17)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1, 9,14, 6,20, 2,10,13, 5,19)( 3,12,16, 8,18, 4,11,15, 7,17)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 1, 2)( 7, 8)(11,12)(15,16)(19,20)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4)( 2, 3)( 9,10)(15,16)(17,20,18,19)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 3)( 2, 4)( 9,10)(15,16)(17,20,18,19)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,10)(15,16)(17,20,18,19)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,10)(15,16)(17,20,18,19)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 9,12)(10,11)(13,14)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 1, 2)( 3, 4)( 9,12)(10,11)(13,14)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $40$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(17,19)(18,20)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $80$ | $4$ | $( 1, 4, 2, 3)( 5, 6)( 7, 8)( 9,11,10,12)(13,16)(14,15)(17,19,18,20)$ |
| $ 4, 4, 4, 2, 2, 1, 1, 1, 1 $ | $80$ | $4$ | $( 1, 4, 2, 3)( 9,11,10,12)(13,16)(14,15)(17,19,18,20)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1,14,20,10, 5, 2,13,19, 9, 6)( 3,15,18,12, 7)( 4,16,17,11, 8)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1,14,20,10, 5)( 2,13,19, 9, 6)( 3,15,18,12, 7, 4,16,17,11, 8)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1,20, 5,13,10, 2,19, 6,14, 9)( 3,17, 7,16,11)( 4,18, 8,15,12)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1,20, 5,13,10)( 2,19, 6,14, 9)( 3,17, 7,16,11, 4,18, 8,15,12)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1, 6, 9,20,13, 2, 5,10,19,14)( 3, 7,12,17,15)( 4, 8,11,18,16)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1, 6, 9,20,13)( 2, 5,10,19,14)( 3, 7,12,17,15, 4, 8,11,18,16)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1, 9,14, 6,20, 2,10,13, 5,19)( 3,11,16, 7,18)( 4,12,15, 8,17)$ |
| $ 10, 5, 5 $ | $256$ | $10$ | $( 1, 9,14, 6,20)( 2,10,13, 5,19)( 3,11,16, 7,18, 4,12,15, 8,17)$ |
Group invariants
| Order: | $5120=2^{10} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |