Show commands:
Magma
magma: G := TransitiveGroup(20, 31);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $31$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2\times A_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16), (1,12,3,15,5,2,11,4,16,6)(7,10,17,20,13,8,9,18,19,14) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $60$: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $A_{5}$
Low degree siblings
10T11, 12T75, 12T76, 20T36, 24T203, 30T29, 30T30, 40T61Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 3, 3, 3, 3, 1, 1 $ | $20$ | $3$ | $( 3, 7, 9)( 4, 8,10)( 5,11,17)( 6,12,18)(13,16,19)(14,15,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3,13)( 4,14)( 7,19)( 8,20)( 9,16)(10,15)(11,17)(12,18)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
$ 6, 6, 6, 2 $ | $20$ | $6$ | $( 1, 2)( 3, 8, 9, 4, 7,10)( 5,12,17, 6,11,18)(13,15,19,14,16,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $15$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5, 6)( 7,20)( 8,19)( 9,15)(10,16)(11,18)(12,17)$ |
$ 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 3, 5,11,16)( 2, 4, 6,12,15)( 7,17,13, 9,19)( 8,18,14,10,20)$ |
$ 5, 5, 5, 5 $ | $12$ | $5$ | $( 1, 3,17,11,13)( 2, 4,18,12,14)( 5,16, 7,19, 9)( 6,15, 8,20,10)$ |
$ 10, 10 $ | $12$ | $10$ | $( 1, 4, 5,12,16, 2, 3, 6,11,15)( 7,18,13,10,19, 8,17,14, 9,20)$ |
$ 10, 10 $ | $12$ | $10$ | $( 1, 4,17,12,13, 2, 3,18,11,14)( 5,15, 7,20, 9, 6,16, 8,19,10)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 120.35 | magma: IdentifyGroup(G);
|
Character table: |
2 3 1 3 3 1 3 1 1 1 1 3 1 1 . 1 1 . . . . . 5 1 . . 1 . . 1 1 1 1 1a 3a 2a 2b 6a 2c 5a 5b 10a 10b 2P 1a 3a 1a 1a 3a 1a 5b 5a 5b 5a 3P 1a 1a 2a 2b 2b 2c 5b 5a 10b 10a 5P 1a 3a 2a 2b 6a 2c 1a 1a 2b 2b 7P 1a 3a 2a 2b 6a 2c 5b 5a 10b 10a X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 1 1 -1 -1 -1 1 1 -1 -1 X.3 3 . -1 3 . -1 A *A A *A X.4 3 . -1 3 . -1 *A A *A A X.5 3 . -1 -3 . 1 A *A -A -*A X.6 3 . -1 -3 . 1 *A A -*A -A X.7 4 1 . 4 1 . -1 -1 -1 -1 X.8 4 1 . -4 -1 . -1 -1 1 1 X.9 5 -1 1 5 -1 1 . . . . X.10 5 -1 1 -5 1 -1 . . . . A = -E(5)-E(5)^4 = (1-Sqrt(5))/2 = -b5 |
magma: CharacterTable(G);