Properties

Label 20T31
Degree $20$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $C_2\times A_5$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(20, 31);
 

Group action invariants

Degree $n$:  $20$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $31$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_2\times A_5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16), (1,12,3,15,5,2,11,4,16,6)(7,10,17,20,13,8,9,18,19,14)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$60$:  $A_5$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $A_{5}$

Low degree siblings

10T11, 12T75, 12T76, 20T36, 24T203, 30T29, 30T30, 40T61

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrder IndexRepresentative
1A $1^{20}$ $1$ $1$ $0$ $()$
2A $2^{10}$ $1$ $2$ $10$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$
2B $2^{10}$ $15$ $2$ $10$ $( 1,18)( 2,17)( 3,15)( 4,16)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)(19,20)$
2C $2^{8},1^{4}$ $15$ $2$ $8$ $( 1,17)( 2,18)( 3,16)( 4,15)( 5,13)( 6,14)( 7,11)( 8,12)$
3A $3^{6},1^{2}$ $20$ $3$ $12$ $( 1, 7, 9)( 2, 8,10)( 5,17,19)( 6,18,20)(11,16,13)(12,15,14)$
5A1 $5^{4}$ $12$ $5$ $16$ $( 1,19, 5,11, 9)( 2,20, 6,12,10)( 3,13,17, 7,16)( 4,14,18, 8,15)$
5A2 $5^{4}$ $12$ $5$ $16$ $( 1, 5, 9,19,11)( 2, 6,10,20,12)( 3,17,16,13, 7)( 4,18,15,14, 8)$
6A $6^{3},2$ $20$ $6$ $16$ $( 1, 8, 9, 2, 7,10)( 3, 4)( 5,18,19, 6,17,20)(11,15,13,12,16,14)$
10A1 $10^{2}$ $12$ $10$ $18$ $( 1, 6, 9,20,11, 2, 5,10,19,12)( 3,18,16,14, 7, 4,17,15,13, 8)$
10A3 $10^{2}$ $12$ $10$ $18$ $( 1,20, 5,12, 9, 2,19, 6,11,10)( 3,14,17, 8,16, 4,13,18, 7,15)$

magma: ConjugacyClasses(G);
 

Malle's constant $a(G)$:     $1/8$

Group invariants

Order:  $120=2^{3} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  120.35
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 3A 5A1 5A2 6A 10A1 10A3
Size 1 1 15 15 20 12 12 20 12 12
2 P 1A 1A 1A 1A 3A 5A2 5A1 3A 5A1 5A2
3 P 1A 2A 2B 2C 1A 5A2 5A1 2A 10A3 10A1
5 P 1A 2A 2B 2C 3A 1A 1A 6A 2A 2A
Type
120.35.1a R 1 1 1 1 1 1 1 1 1 1
120.35.1b R 1 1 1 1 1 1 1 1 1 1
120.35.3a1 R 3 3 1 1 0 ζ51ζ5 ζ52ζ52 0 ζ52ζ52 ζ51ζ5
120.35.3a2 R 3 3 1 1 0 ζ52ζ52 ζ51ζ5 0 ζ51ζ5 ζ52ζ52
120.35.3b1 R 3 3 1 1 0 ζ51ζ5 ζ52ζ52 0 ζ52+ζ52 ζ51+ζ5
120.35.3b2 R 3 3 1 1 0 ζ52ζ52 ζ51ζ5 0 ζ51+ζ5 ζ52+ζ52
120.35.4a R 4 4 0 0 1 1 1 1 1 1
120.35.4b R 4 4 0 0 1 1 1 1 1 1
120.35.5a R 5 5 1 1 1 0 0 1 0 0
120.35.5b R 5 5 1 1 1 0 0 1 0 0

magma: CharacterTable(G);