Show commands:
Magma
magma: G := TransitiveGroup(20, 31);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $31$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2\times A_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,10)(2,9)(3,8)(4,7)(5,6)(11,20)(12,19)(13,18)(14,17)(15,16), (1,12,3,15,5,2,11,4,16,6)(7,10,17,20,13,8,9,18,19,14) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $60$: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: $A_{5}$
Low degree siblings
10T11, 12T75, 12T76, 20T36, 24T203, 30T29, 30T30, 40T61Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{10}$ | $15$ | $2$ | $10$ | $( 1,18)( 2,17)( 3,15)( 4,16)( 5,14)( 6,13)( 7,12)( 8,11)( 9,10)(19,20)$ |
2C | $2^{8},1^{4}$ | $15$ | $2$ | $8$ | $( 1,17)( 2,18)( 3,16)( 4,15)( 5,13)( 6,14)( 7,11)( 8,12)$ |
3A | $3^{6},1^{2}$ | $20$ | $3$ | $12$ | $( 1, 7, 9)( 2, 8,10)( 5,17,19)( 6,18,20)(11,16,13)(12,15,14)$ |
5A1 | $5^{4}$ | $12$ | $5$ | $16$ | $( 1,19, 5,11, 9)( 2,20, 6,12,10)( 3,13,17, 7,16)( 4,14,18, 8,15)$ |
5A2 | $5^{4}$ | $12$ | $5$ | $16$ | $( 1, 5, 9,19,11)( 2, 6,10,20,12)( 3,17,16,13, 7)( 4,18,15,14, 8)$ |
6A | $6^{3},2$ | $20$ | $6$ | $16$ | $( 1, 8, 9, 2, 7,10)( 3, 4)( 5,18,19, 6,17,20)(11,15,13,12,16,14)$ |
10A1 | $10^{2}$ | $12$ | $10$ | $18$ | $( 1, 6, 9,20,11, 2, 5,10,19,12)( 3,18,16,14, 7, 4,17,15,13, 8)$ |
10A3 | $10^{2}$ | $12$ | $10$ | $18$ | $( 1,20, 5,12, 9, 2,19, 6,11,10)( 3,14,17, 8,16, 4,13,18, 7,15)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/8$
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.35 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 6A | 10A1 | 10A3 | ||
Size | 1 | 1 | 15 | 15 | 20 | 12 | 12 | 20 | 12 | 12 | |
2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 3A | 5A1 | 5A2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 2A | 10A3 | 10A1 | |
5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 6A | 2A | 2A | |
Type | |||||||||||
120.35.1a | R | ||||||||||
120.35.1b | R | ||||||||||
120.35.3a1 | R | ||||||||||
120.35.3a2 | R | ||||||||||
120.35.3b1 | R | ||||||||||
120.35.3b2 | R | ||||||||||
120.35.4a | R | ||||||||||
120.35.4b | R | ||||||||||
120.35.5a | R | ||||||||||
120.35.5b | R |
magma: CharacterTable(G);