Properties

Label 20T303
Order \(5120\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $303$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,8,19,13,3,10,5,18,16,2,12,7,20,14,4,9,6,17,15), (1,17,12,16,7,2,18,11,15,8)(3,19,10,14,5,4,20,9,13,6)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5:  $C_5$
10:  $C_{10}$
80:  $C_2^4 : C_5$
160:  $C_2 \times (C_2^4 : C_5)$
2560:  20T251

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2 \times (C_2^4 : C_5)$

Low degree siblings

20T303 x 15, 40T3647 x 4, 40T3896 x 4, 40T3965 x 8, 40T3975 x 8, 40T3982 x 8, 40T3983 x 8, 40T4011 x 8, 40T4017 x 8, 40T4024 x 8, 40T4029 x 8, 40T4073 x 2, 40T4086 x 2, 40T4216 x 4, 40T4283 x 4, 40T4298 x 8, 40T4305 x 8, 40T4316 x 8, 40T4334 x 8, 40T4416 x 4, 40T4522 x 8, 40T4706 x 8, 40T4709 x 8, 40T5033 x 16, 40T5034 x 16, 40T5035 x 16, 40T5036 x 16, 40T5037 x 32, 40T5038 x 32

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

There are 50 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5120=2^{10} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.