Properties

Label 20T299
Order \(5000\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $299$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,13,9,5,18,11,8,4,16,14,7,3,19,12,6,2,17,15,10), (1,6,4,9,2,7,5,10,3,8)(11,18,12,19,13,20,14,16,15,17)
$|\Aut(F/K)|$:  $5$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
8:  $D_{4}$
10:  $D_{5}$, $C_{10}$ x 3
20:  $D_{10}$, 20T3
40:  20T7, 20T12
50:  $D_5\times C_5$
100:  20T24
200:  $D_5^2 : C_2$, 20T53
1000:  20T178, 20T185

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 5: None

Degree 10: None

Low degree siblings

20T299 x 7, 40T3014 x 8, 40T3040 x 4, 40T3041 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 230 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5000=2^{3} \cdot 5^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.