Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $291$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,19,13,3,2,20,14,4)(5,16,9,17)(6,15,10,18)(7,12)(8,11), (1,15)(2,16)(3,18,4,17)(5,12,6,11)(7,8)(13,20,14,19) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 120: $S_5$ 1920: 16T1329 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
12T257 x 2, 20T281 x 2, 20T291, 24T7238, 24T7255, 32T206828 x 4, 40T2727 x 2, 40T2744, 40T2745, 40T2755 x 2, 40T2837 x 2, 40T2844 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 9,10)(11,12)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 1, 1 $ | $120$ | $4$ | $( 3, 9, 4,10)( 5,14)( 6,13)( 7,17, 8,18)(11,12)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 3,10)( 4, 9)( 5,14)( 6,13)( 7,18)( 8,17)(15,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $120$ | $4$ | $( 3, 9, 4,10)( 5,13, 6,14)( 7,18)( 8,17)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $40$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5,14)( 6,13)( 7,17)( 8,18)(11,12)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 3, 8)( 4, 7)( 9,20,10,19)(11,17,12,18)(13,15)(14,16)$ |
| $ 4, 4, 4, 2, 2, 2, 1, 1 $ | $240$ | $4$ | $( 3, 7, 4, 8)( 5, 6)( 9,20,10,19)(11,18)(12,17)(13,15,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 3, 7)( 4, 8)( 9,19)(10,20)(11,17)(12,18)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,19)(10,20)(11,17)(12,18)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $60$ | $4$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,20,10,19)(11,17,12,18)(13,16)(14,15)$ |
| $ 6, 6, 6, 1, 1 $ | $320$ | $6$ | $( 3,20, 9, 7,12,17)( 4,19,10, 8,11,18)( 5,16,13, 6,15,14)$ |
| $ 6, 6, 3, 3, 2 $ | $320$ | $6$ | $( 1, 2)( 3,19,10, 7,11,17)( 4,20, 9, 8,12,18)( 5,15,14)( 6,16,13)$ |
| $ 6, 6, 6, 2 $ | $320$ | $6$ | $( 1, 2)( 3,12, 9, 4,11,10)( 5,15,13, 6,16,14)( 7,19,17, 8,20,18)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $320$ | $3$ | $( 3,11,10)( 4,12, 9)( 5,16,14)( 6,15,13)( 7,20,17)( 8,19,18)$ |
| $ 5, 5, 5, 5 $ | $384$ | $5$ | $( 1,20,14,16,10)( 2,19,13,15, 9)( 3,17,11, 7, 5)( 4,18,12, 8, 6)$ |
| $ 10, 10 $ | $384$ | $10$ | $( 1,20,13,15, 9, 2,19,14,16,10)( 3,18,12, 7, 6, 4,17,11, 8, 5)$ |
| $ 8, 4, 4, 2, 2 $ | $240$ | $8$ | $( 1,20,13, 4, 2,19,14, 3)( 5,16, 9,17)( 6,15,10,18)( 7,12)( 8,11)$ |
| $ 4, 4, 4, 4, 4 $ | $240$ | $4$ | $( 1,19,14, 3)( 2,20,13, 4)( 5,16,10,17)( 6,15, 9,18)( 7,11, 8,12)$ |
| $ 8, 4, 4, 2, 2 $ | $240$ | $8$ | $( 1,19,14, 4, 2,20,13, 3)( 5,16, 9,17)( 6,15,10,18)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4, 4 $ | $240$ | $4$ | $( 1,20,13, 3)( 2,19,14, 4)( 5,16,10,17)( 6,15, 9,18)( 7,12, 8,11)$ |
Group invariants
| Order: | $3840=2^{8} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |