Properties

 Label 20T29 Degree $20$ Order $100$ Cyclic no Abelian no Solvable yes Primitive no $p$-group no Group: $C_5\times F_5$

Related objects

Show commands: Magma

magma: G := TransitiveGroup(20, 29);

Group action invariants

 Degree $n$: $20$ magma: t, n := TransitiveGroupIdentification(G); n; Transitive number $t$: $29$ magma: t, n := TransitiveGroupIdentification(G); t; Group: $C_5\times F_5$ Parity: $-1$ magma: IsEven(G); Primitive: no magma: IsPrimitive(G); Nilpotency class: $-1$ (not nilpotent) magma: NilpotencyClass(G); $\card{\Aut(F/K)}$: $5$ magma: Order(Centralizer(SymmetricGroup(n), G)); Generators: (1,14,17,6,2,12,16,8,3,15,20,10,4,13,19,7,5,11,18,9), (1,15,20,7,3,11,18,6,5,12,16,10,2,13,19,9,4,14,17,8) magma: Generators(G);

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$
$5$:  $C_5$
$10$:  $C_{10}$
$20$:  $F_5$, 20T1

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 5: None

Degree 10: None

Low degree siblings

25T7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

 Cycle Type Size Order Representative $1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $1$ $1$ $()$ $5, 5, 5, 1, 1, 1, 1, 1$ $4$ $5$ $( 6, 7, 8, 9,10)(11,13,15,12,14)(16,19,17,20,18)$ $5, 5, 5, 1, 1, 1, 1, 1$ $4$ $5$ $( 6, 8,10, 7, 9)(11,15,14,13,12)(16,17,18,19,20)$ $5, 5, 5, 1, 1, 1, 1, 1$ $4$ $5$ $( 6, 9, 7,10, 8)(11,12,13,14,15)(16,20,19,18,17)$ $5, 5, 5, 1, 1, 1, 1, 1$ $4$ $5$ $( 6,10, 9, 8, 7)(11,14,12,15,13)(16,18,20,17,19)$ $5, 5, 5, 5$ $4$ $5$ $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)$ $5, 5, 5, 5$ $1$ $5$ $( 1, 2, 3, 4, 5)( 6, 8,10, 7, 9)(11,14,12,15,13)(16,20,19,18,17)$ $5, 5, 5, 5$ $1$ $5$ $( 1, 3, 5, 2, 4)( 6,10, 9, 8, 7)(11,12,13,14,15)(16,19,17,20,18)$ $5, 5, 5, 5$ $1$ $5$ $( 1, 4, 2, 5, 3)( 6, 7, 8, 9,10)(11,15,14,13,12)(16,18,20,17,19)$ $5, 5, 5, 5$ $1$ $5$ $( 1, 5, 4, 3, 2)( 6, 9, 7,10, 8)(11,13,15,12,14)(16,17,18,19,20)$ $20$ $5$ $20$ $( 1, 6,16,15, 4, 7,18,14, 2, 8,20,13, 5, 9,17,12, 3,10,19,11)$ $4, 4, 4, 4, 4$ $5$ $4$ $( 1, 6,17,15)( 2, 8,16,13)( 3,10,20,11)( 4, 7,19,14)( 5, 9,18,12)$ $20$ $5$ $20$ $( 1, 6,18,15, 3,10,16,11, 5, 9,19,12, 2, 8,17,13, 4, 7,20,14)$ $20$ $5$ $20$ $( 1, 6,19,15, 5, 9,20,12, 4, 7,16,14, 3,10,17,11, 2, 8,18,13)$ $20$ $5$ $20$ $( 1, 6,20,15, 2, 8,19,13, 3,10,18,11, 4, 7,17,14, 5, 9,16,12)$ $20$ $5$ $20$ $( 1,11,19,10, 3,12,17, 9, 5,13,20, 8, 2,14,18, 7, 4,15,16, 6)$ $4, 4, 4, 4, 4$ $5$ $4$ $( 1,11,16, 9)( 2,14,20, 6)( 3,12,19, 8)( 4,15,18,10)( 5,13,17, 7)$ $20$ $5$ $20$ $( 1,11,18, 8, 4,15,20, 9, 2,14,17,10, 5,13,19, 6, 3,12,16, 7)$ $20$ $5$ $20$ $( 1,11,20, 7, 2,14,19, 9, 3,12,18, 6, 4,15,17, 8, 5,13,16,10)$ $20$ $5$ $20$ $( 1,11,17, 6, 5,13,18, 9, 4,15,19, 7, 3,12,20,10, 2,14,16, 8)$ $10, 10$ $5$ $10$ $( 1,16, 2,20, 3,19, 4,18, 5,17)( 6,11, 8,14,10,12, 7,15, 9,13)$ $10, 10$ $5$ $10$ $( 1,16, 5,17, 4,18, 3,19, 2,20)( 6,12, 9,14, 7,11,10,13, 8,15)$ $10, 10$ $5$ $10$ $( 1,16, 3,19, 5,17, 2,20, 4,18)( 6,13,10,14, 9,15, 8,11, 7,12)$ $2, 2, 2, 2, 2, 2, 2, 2, 2, 2$ $5$ $2$ $( 1,16)( 2,20)( 3,19)( 4,18)( 5,17)( 6,14)( 7,13)( 8,12)( 9,11)(10,15)$ $10, 10$ $5$ $10$ $( 1,16, 4,18, 2,20, 5,17, 3,19)( 6,15, 7,14, 8,13, 9,12,10,11)$

magma: ConjugacyClasses(G);

Group invariants

 Order: $100=2^{2} \cdot 5^{2}$ magma: Order(G); Cyclic: no magma: IsCyclic(G); Abelian: no magma: IsAbelian(G); Solvable: yes magma: IsSolvable(G); Label: 100.9 magma: IdentifyGroup(G);
 Character table: not available.

magma: CharacterTable(G);