Show commands:
Magma
magma: G := TransitiveGroup(20, 29);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $29$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5\times F_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $5$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14,17,6,2,12,16,8,3,15,20,10,4,13,19,7,5,11,18,9), (1,15,20,7,3,11,18,6,5,12,16,10,2,13,19,9,4,14,17,8) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $5$: $C_5$ $10$: $C_{10}$ $20$: $F_5$, 20T1 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 10: None
Low degree siblings
25T7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6, 7, 8, 9,10)(11,13,15,12,14)(16,19,17,20,18)$ |
$ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6, 8,10, 7, 9)(11,15,14,13,12)(16,17,18,19,20)$ |
$ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6, 9, 7,10, 8)(11,12,13,14,15)(16,20,19,18,17)$ |
$ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6,10, 9, 8, 7)(11,14,12,15,13)(16,18,20,17,19)$ |
$ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)$ |
$ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 8,10, 7, 9)(11,14,12,15,13)(16,20,19,18,17)$ |
$ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 3, 5, 2, 4)( 6,10, 9, 8, 7)(11,12,13,14,15)(16,19,17,20,18)$ |
$ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 4, 2, 5, 3)( 6, 7, 8, 9,10)(11,15,14,13,12)(16,18,20,17,19)$ |
$ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 5, 4, 3, 2)( 6, 9, 7,10, 8)(11,13,15,12,14)(16,17,18,19,20)$ |
$ 20 $ | $5$ | $20$ | $( 1, 6,16,15, 4, 7,18,14, 2, 8,20,13, 5, 9,17,12, 3,10,19,11)$ |
$ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 6,17,15)( 2, 8,16,13)( 3,10,20,11)( 4, 7,19,14)( 5, 9,18,12)$ |
$ 20 $ | $5$ | $20$ | $( 1, 6,18,15, 3,10,16,11, 5, 9,19,12, 2, 8,17,13, 4, 7,20,14)$ |
$ 20 $ | $5$ | $20$ | $( 1, 6,19,15, 5, 9,20,12, 4, 7,16,14, 3,10,17,11, 2, 8,18,13)$ |
$ 20 $ | $5$ | $20$ | $( 1, 6,20,15, 2, 8,19,13, 3,10,18,11, 4, 7,17,14, 5, 9,16,12)$ |
$ 20 $ | $5$ | $20$ | $( 1,11,19,10, 3,12,17, 9, 5,13,20, 8, 2,14,18, 7, 4,15,16, 6)$ |
$ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1,11,16, 9)( 2,14,20, 6)( 3,12,19, 8)( 4,15,18,10)( 5,13,17, 7)$ |
$ 20 $ | $5$ | $20$ | $( 1,11,18, 8, 4,15,20, 9, 2,14,17,10, 5,13,19, 6, 3,12,16, 7)$ |
$ 20 $ | $5$ | $20$ | $( 1,11,20, 7, 2,14,19, 9, 3,12,18, 6, 4,15,17, 8, 5,13,16,10)$ |
$ 20 $ | $5$ | $20$ | $( 1,11,17, 6, 5,13,18, 9, 4,15,19, 7, 3,12,20,10, 2,14,16, 8)$ |
$ 10, 10 $ | $5$ | $10$ | $( 1,16, 2,20, 3,19, 4,18, 5,17)( 6,11, 8,14,10,12, 7,15, 9,13)$ |
$ 10, 10 $ | $5$ | $10$ | $( 1,16, 5,17, 4,18, 3,19, 2,20)( 6,12, 9,14, 7,11,10,13, 8,15)$ |
$ 10, 10 $ | $5$ | $10$ | $( 1,16, 3,19, 5,17, 2,20, 4,18)( 6,13,10,14, 9,15, 8,11, 7,12)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1,16)( 2,20)( 3,19)( 4,18)( 5,17)( 6,14)( 7,13)( 8,12)( 9,11)(10,15)$ |
$ 10, 10 $ | $5$ | $10$ | $( 1,16, 4,18, 2,20, 5,17, 3,19)( 6,15, 7,14, 8,13, 9,12,10,11)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $100=2^{2} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 100.9 | magma: IdentifyGroup(G);
|
Character table: not available. |
magma: CharacterTable(G);