Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $285$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10)(2,9)(3,11)(4,12)(5,7,6,8)(13,14)(15,19,16,20)(17,18), (1,12,16,20)(2,11,15,19)(3,17,9,7,4,18,10,8)(5,14)(6,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 120: $S_5$ 240: $S_5\times C_2$ 1920: $(C_2^4:A_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
10T39 x 2, 20T275, 20T279 x 2, 20T285, 20T288 x 2, 20T289 x 2, 30T517 x 2, 30T524 x 2, 32T206825 x 2, 40T2728 x 2, 40T2731 x 2, 40T2748, 40T2749, 40T2757 x 2, 40T2771 x 2, 40T2772 x 2, 40T2773 x 2, 40T2774 x 2, 40T2779 x 2, 40T2780 x 2, 40T2781 x 2, 40T2782 x 2, 40T2798, 40T2839 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $60$ | $4$ | $( 1, 2)( 3,12)( 4,11)( 5,19, 6,20)( 7,16, 8,15)( 9,10)(13,17)(14,18)$ |
| $ 4, 4, 4, 2, 2, 2, 1, 1 $ | $120$ | $4$ | $( 1, 2)( 3,11, 4,12)( 5,19, 6,20)( 7,15)( 8,16)(13,17,14,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 3,11)( 4,12)( 5,20)( 6,19)( 7,15)( 8,16)(13,17)(14,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,20)( 6,19)( 7,15)( 8,16)( 9,10)(13,18)(14,17)$ |
| $ 4, 4, 4, 2, 2, 2, 1, 1 $ | $120$ | $4$ | $( 1, 2)( 3,11, 4,12)( 5,20)( 6,19)( 7,16, 8,15)(13,18,14,17)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 3,11)( 4,12)( 5,19, 6,20)( 7,16, 8,15)(13,18)(14,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $60$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 7,16)( 8,15)( 9,10)(11,17)(12,18)(19,20)$ |
| $ 4, 4, 4, 2, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 1, 2)( 3,13, 4,14)( 7,15, 8,16)(11,17,12,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 3,13)( 4,14)( 7,16)( 8,15)( 9,10)(11,17)(12,18)$ |
| $ 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $4$ | $( 3,14, 4,13)( 7,15, 8,16)(11,17,12,18)$ |
| $ 4, 4, 4, 2, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 1, 2)( 3,13, 4,14)( 7,15, 8,16)( 9,10)(11,18,12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $60$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 7,16)( 8,15)(11,18)(12,17)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 2)( 3,13, 4,14)( 5, 6)( 7,16, 8,15)( 9,10)(11,18,12,17)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $20$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5, 6)( 7,15)( 8,16)(11,18)(12,17)(19,20)$ |
| $ 6, 6, 6, 1, 1 $ | $160$ | $6$ | $( 3, 6,14,18,20,11)( 4, 5,13,17,19,12)( 7,15,10, 8,16, 9)$ |
| $ 12, 6, 2 $ | $160$ | $12$ | $( 1, 2)( 3, 6,13,17,20,11, 4, 5,14,18,19,12)( 7,15,10, 8,16, 9)$ |
| $ 12, 3, 3, 1, 1 $ | $160$ | $12$ | $( 3, 6,13,18,19,12, 4, 5,14,17,20,11)( 7,16, 9)( 8,15,10)$ |
| $ 6, 6, 3, 3, 2 $ | $160$ | $6$ | $( 1, 2)( 3, 6,14,17,19,12)( 4, 5,13,18,20,11)( 7,16, 9)( 8,15,10)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $80$ | $3$ | $( 3,20,13)( 4,19,14)( 5,11,17)( 6,12,18)( 7,15, 9)( 8,16,10)$ |
| $ 6, 6, 3, 3, 1, 1 $ | $80$ | $6$ | $( 3,20,14, 4,19,13)( 5,12,18, 6,11,17)( 7,16, 9)( 8,15,10)$ |
| $ 6, 3, 3, 3, 3, 2 $ | $160$ | $6$ | $( 1, 2)( 3,19,13, 4,20,14)( 5,11,17)( 6,12,18)( 7,15, 9)( 8,16,10)$ |
| $ 6, 6, 3, 3, 1, 1 $ | $160$ | $6$ | $( 3,19,13)( 4,20,14)( 5,11,18, 6,12,17)( 7,16,10, 8,15, 9)$ |
| $ 6, 6, 6, 2 $ | $80$ | $6$ | $( 1, 2)( 3,20,13, 4,19,14)( 5,11,18, 6,12,17)( 7,16,10, 8,15, 9)$ |
| $ 6, 3, 3, 3, 3, 2 $ | $80$ | $6$ | $( 1, 2)( 3,20,14)( 4,19,13)( 5,12,17)( 6,11,18)( 7,15,10, 8,16, 9)$ |
| $ 8, 4, 4, 2, 2 $ | $240$ | $8$ | $( 1, 9)( 2,10)( 3,13,12,17)( 4,14,11,18)( 5, 8,20,15, 6, 7,19,16)$ |
| $ 4, 4, 4, 4, 4 $ | $240$ | $4$ | $( 1,10, 2, 9)( 3,14,12,17)( 4,13,11,18)( 5, 8,20,16)( 6, 7,19,15)$ |
| $ 8, 4, 4, 2, 2 $ | $240$ | $8$ | $( 1, 9)( 2,10)( 3,14,11,17)( 4,13,12,18)( 5, 8,19,15, 6, 7,20,16)$ |
| $ 4, 4, 4, 4, 4 $ | $240$ | $4$ | $( 1,10, 2, 9)( 3,13,11,17)( 4,14,12,18)( 5, 8,19,16)( 6, 7,20,15)$ |
| $ 5, 5, 5, 5 $ | $384$ | $5$ | $( 1, 9, 6,13, 8)( 2,10, 5,14, 7)( 3,17,11,15,19)( 4,18,12,16,20)$ |
| $ 10, 10 $ | $384$ | $10$ | $( 1, 9, 6,14, 7, 2,10, 5,13, 8)( 3,18,12,15,20, 4,17,11,16,19)$ |
Group invariants
| Order: | $3840=2^{8} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |