Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $281$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,8,15,6,11,2,7,16,5,12)(3,18,14,9,19,4,17,13,10,20), (1,5,2,6)(3,14,8,15)(4,13,7,16)(9,12,20,18,10,11,19,17) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 120: $S_5$ 1920: 16T1329 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: $S_5$
Low degree siblings
12T257 x 2, 20T281, 20T291 x 2, 24T7238, 24T7255, 32T206828 x 4, 40T2727 x 2, 40T2744, 40T2745, 40T2755 x 2, 40T2837 x 2, 40T2844 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $15$ | $2$ | $( 3, 4)( 7, 8)( 9,10)(13,14)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $120$ | $4$ | $( 3, 4)( 7, 8)( 9,11,10,12)(13,15)(14,16)(17,19,18,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $120$ | $4$ | $( 5, 6)( 7, 8)( 9,11)(10,12)(13,16,14,15)(17,20,18,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $40$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,15)(14,16)(17,19)(18,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $60$ | $4$ | $( 1, 2)( 3,19, 4,20)( 5,15)( 6,16)( 7,12, 8,11)( 9,17)(10,18)(13,14)$ |
| $ 4, 4, 4, 2, 2, 2, 1, 1 $ | $240$ | $4$ | $( 1, 2)( 3,20)( 4,19)( 5,16, 6,15)( 7,12, 8,11)( 9,18,10,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 2)( 3,19)( 4,20)( 5,15)( 6,16)( 7,12)( 8,11)( 9,18)(10,17)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $4$ | $( 3,19, 4,20)( 5,15)( 6,16)( 7,11, 8,12)( 9,17)(10,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 3,19)( 4,20)( 5,15)( 6,16)( 7,11)( 8,12)( 9,18)(10,17)$ |
| $ 6, 6, 6, 2 $ | $320$ | $6$ | $( 1, 2)( 3,19, 9, 7,12,18)( 4,20,10, 8,11,17)( 5,15,14, 6,16,13)$ |
| $ 6, 6, 3, 3, 1, 1 $ | $320$ | $6$ | $( 3,20,10, 7,11,18)( 4,19, 9, 8,12,17)( 5,16,13)( 6,15,14)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $320$ | $3$ | $( 3,11,10)( 4,12, 9)( 5,16,13)( 6,15,14)( 7,20,18)( 8,19,17)$ |
| $ 6, 6, 6, 2 $ | $320$ | $6$ | $( 1, 2)( 3,12, 9, 4,11,10)( 5,15,14, 6,16,13)( 7,19,18, 8,20,17)$ |
| $ 10, 10 $ | $384$ | $10$ | $( 1, 8,15, 5,11, 2, 7,16, 6,12)( 3,17,14, 9,20, 4,18,13,10,19)$ |
| $ 5, 5, 5, 5 $ | $384$ | $5$ | $( 1, 8,16, 6,12)( 2, 7,15, 5,11)( 3,18,14, 9,19)( 4,17,13,10,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $240$ | $4$ | $( 1, 8,15,10)( 2, 7,16, 9)( 3,17)( 4,18)( 5,11,20,13)( 6,12,19,14)$ |
| $ 8, 4, 4, 4 $ | $240$ | $8$ | $( 1, 8,16, 9, 2, 7,15,10)( 3,18, 4,17)( 5,11,19,13)( 6,12,20,14)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $240$ | $4$ | $( 1, 7,16,10)( 2, 8,15, 9)( 3,18)( 4,17)( 5,11,20,13)( 6,12,19,14)$ |
| $ 8, 4, 4, 4 $ | $240$ | $8$ | $( 1, 7,15, 9, 2, 8,16,10)( 3,17, 4,18)( 5,11,19,13)( 6,12,20,14)$ |
Group invariants
| Order: | $3840=2^{8} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |