Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $277$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20,7,12,9,17)(2,19,8,11,10,18), (1,15,17,14,20,2,16,18,13,19)(3,10,12,6,7,4,9,11,5,8) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 60: $A_5$ 120: $A_5\times C_2$ x 3 240: 20T64 960: $C_2^4 : A_5$ 1920: $C_2 \wr A_5$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $A_5$
Degree 10: $A_5\times C_2$, $C_2 \wr A_5$ x 2
Low degree siblings
20T277 x 2, 40T2734 x 3, 40T2735 x 3, 40T2765 x 6, 40T2778Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 7,17)( 8,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3,13)( 4,14)( 7,17)( 8,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3,13)( 4,14)( 7,17)( 8,18)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 7,17)( 8,18)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,16)( 6,15)( 7,17)( 8,18)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5, 6)( 7,18)( 8,17)( 9,19)(10,20)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5, 6)( 7, 8)( 9,19)(10,20)(11,12)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,19)(10,20)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5, 6)( 7,18)( 8,17)( 9,19)(10,20)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,14)( 4,13)( 5,15)( 6,16)( 7,18)( 8,17)( 9,19)(10,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1,19)( 2,20)( 3,14)( 4,13)( 5,18,16, 8)( 6,17,15, 7)( 9,11)(10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1,19)( 2,20)( 3,14)( 4,13)( 5, 8)( 6, 7)( 9,11)(10,12)(15,17)(16,18)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1,19)( 2,20)( 3, 4)( 5,18,16, 8)( 6,17,15, 7)( 9,11)(10,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1,19)( 2,20)( 3, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,14)(15,17)(16,18)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $60$ | $4$ | $( 1,10,12,19)( 2, 9,11,20)( 3,14)( 4,13)( 5,18,16, 8)( 6,17,15, 7)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $60$ | $4$ | $( 1,10,12,19)( 2, 9,11,20)( 3, 4)( 5,18,16, 8)( 6,17,15, 7)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $120$ | $4$ | $( 1, 9,12,20)( 2,10,11,19)( 5, 7)( 6, 8)(15,18)(16,17)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $60$ | $4$ | $( 1, 9,12,20)( 2,10,11,19)( 5,17,16, 7)( 6,18,15, 8)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1, 9,12,20)( 2,10,11,19)( 3,13)( 4,14)( 5, 7)( 6, 8)(15,18)(16,17)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $60$ | $4$ | $( 1, 9,12,20)( 2,10,11,19)( 3,13)( 4,14)( 5,17,16, 7)( 6,18,15, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 1,20)( 2,19)( 5, 7)( 6, 8)( 9,12)(10,11)(15,18)(16,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1,20)( 2,19)( 3,13)( 4,14)( 5, 7)( 6, 8)( 9,12)(10,11)(15,18)(16,17)$ |
| $ 3, 3, 3, 3, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,20,16)( 2,19,15)( 3,13)( 4,14)( 5,12, 9)( 6,11,10)( 7,17)( 8,18)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1,20,16)( 2,19,15)( 3,13)( 4,14)( 5,12, 9)( 6,11,10)$ |
| $ 3, 3, 3, 3, 2, 2, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1,20,16)( 2,19,15)( 5,12, 9)( 6,11,10)( 7,17)( 8,18)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $80$ | $3$ | $( 1,20,16)( 2,19,15)( 5,12, 9)( 6,11,10)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1, 9, 5,12,20,16)( 2,10, 6,11,19,15)( 3,13)( 4,14)( 7,17)( 8,18)$ |
| $ 6, 6, 2, 2, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1, 9, 5,12,20,16)( 2,10, 6,11,19,15)( 3,13)( 4,14)$ |
| $ 6, 6, 2, 2, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1, 9, 5,12,20,16)( 2,10, 6,11,19,15)( 7,17)( 8,18)$ |
| $ 6, 6, 1, 1, 1, 1, 1, 1, 1, 1 $ | $80$ | $6$ | $( 1, 9, 5,12,20,16)( 2,10, 6,11,19,15)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,10, 5,11,20,15)( 2, 9, 6,12,19,16)( 3, 4)( 7, 8)(13,14)(17,18)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,10, 5,11,20,15)( 2, 9, 6,12,19,16)( 3, 4)( 7,18)( 8,17)(13,14)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,10, 5,11,20,15)( 2, 9, 6,12,19,16)( 3,14)( 4,13)( 7, 8)(17,18)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,10, 5,11,20,15)( 2, 9, 6,12,19,16)( 3,14)( 4,13)( 7,18)( 8,17)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,19,16, 2,20,15)( 3, 4)( 5,11, 9, 6,12,10)( 7, 8)(13,14)(17,18)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,19,16, 2,20,15)( 3, 4)( 5,11, 9, 6,12,10)( 7,18)( 8,17)(13,14)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,19,16, 2,20,15)( 3,14)( 4,13)( 5,11, 9, 6,12,10)( 7, 8)(17,18)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,19,16, 2,20,15)( 3,14)( 4,13)( 5,11, 9, 6,12,10)( 7,18)( 8,17)$ |
| $ 10, 10 $ | $192$ | $10$ | $( 1,19,16, 8, 3,11, 9, 6,17,14)( 2,20,15, 7, 4,12,10, 5,18,13)$ |
| $ 10, 10 $ | $192$ | $10$ | $( 1,19,16,18,13, 2,20,15,17,14)( 3,11, 9, 6, 7, 4,12,10, 5, 8)$ |
| $ 5, 5, 5, 5 $ | $192$ | $5$ | $( 1, 9, 5, 7,13)( 2,10, 6, 8,14)( 3,12,20,16,17)( 4,11,19,15,18)$ |
| $ 10, 10 $ | $192$ | $10$ | $( 1, 9, 5,17, 3,12,20,16, 7,13)( 2,10, 6,18, 4,11,19,15, 8,14)$ |
| $ 10, 10 $ | $192$ | $10$ | $( 1,19,16, 4, 7,11, 9, 6,13,18)( 2,20,15, 3, 8,12,10, 5,14,17)$ |
| $ 10, 10 $ | $192$ | $10$ | $( 1,19,16, 4,17, 2,20,15, 3,18)( 5,14, 7,11, 9, 6,13, 8,12,10)$ |
| $ 5, 5, 5, 5 $ | $192$ | $5$ | $( 1, 9, 5, 3,17)( 2,10, 6, 4,18)( 7,12,20,16,13)( 8,11,19,15,14)$ |
| $ 10, 10 $ | $192$ | $10$ | $( 1, 9, 5, 3, 7,12,20,16,13,17)( 2,10, 6, 4, 8,11,19,15,14,18)$ |
Group invariants
| Order: | $3840=2^{8} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |