Properties

Label 20T263
Order \(2560\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $263$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,12,17,15,4,7,9,20,13)(2,5,11,18,16,3,8,10,19,14), (1,8,12,19,13,4,5,9,18,15)(2,7,11,20,14,3,6,10,17,16), (1,15,20,9,8)(2,16,19,10,7)(3,14,18,11,6)(4,13,17,12,5)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5:  $C_5$
10:  $C_{10}$
80:  $C_2^4 : C_5$ x 17
160:  $C_2 \times (C_2^4 : C_5)$ x 17
1280:  20T190

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2^4 : C_5$, $C_2 \times (C_2^4 : C_5)$ x 2

Low degree siblings

20T263 x 6119, 40T1955 x 6120, 40T2037 x 1020, 40T2135 x 24480, 40T2175 x 12240, 40T2214 x 2040, 40T2246 x 6120, 40T2274 x 12240, 40T2275 x 24480, 40T2276 x 48960

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 112 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2560=2^{9} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.