Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $262$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16)(2,15)(3,17,4,18)(5,20)(6,19)(7,11,8,12)(9,14)(10,13), (1,10,7,6,4)(2,9,8,5,3)(11,20,18,15,14)(12,19,17,16,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 5: $C_5$ 10: $C_{10}$ 80: $C_2^4 : C_5$ 160: $C_2 \times (C_2^4 : C_5)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_{10}$
Low degree siblings
20T256 x 24, 20T262 x 23, 32T205514 x 8, 40T1883 x 48, 40T1975 x 24, 40T2019 x 12, 40T2128 x 48, 40T2166 x 24, 40T2206 x 24, 40T2209 x 48, 40T2210 x 48, 40T2211 x 48, 40T2212 x 24, 40T2240 x 12, 40T2291 x 8, 40T2292 x 24, 40T2293 x 48, 40T2294 x 48, 40T2295 x 48, 40T2296 x 48, 40T2297 x 96, 40T2298 x 96, 40T2299 x 96, 40T2300 x 96, 40T2301 x 96, 40T2302 x 96, 40T2303 x 96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 7, 8)(11,12)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,12)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 7, 8)( 9,10)(11,12)(13,14)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $80$ | $4$ | $( 1,16)( 2,15)( 3,17, 4,18)( 5,20)( 6,19)( 7,11, 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $(11,12)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 7, 8)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 7, 8)( 9,10)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 9,10)(11,12)(13,14)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5, 6)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5, 6)( 7, 8)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 5, 6)(11,12)(15,16)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $80$ | $4$ | $( 1,16, 2,15)( 3,17)( 4,18)( 5,20, 6,19)( 7,11, 8,12)( 9,14,10,13)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 7, 8)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 5, 6)(11,12)(13,14)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 5, 6)( 9,10)(11,12)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)( 9,10)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 9,10)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(15,16)(17,18)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $80$ | $4$ | $( 1,16)( 2,15)( 3,17, 4,18)( 5,20, 6,19)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $(13,14)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,14)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 5, 6)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,12)(13,14)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 7, 8)( 9,10)(11,12)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3, 4)( 9,10)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)( 9,10)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 9,10)(15,16)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,16)( 2,15)( 3,17)( 4,18)( 5,20)( 6,19)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1,10, 7, 6, 4)( 2, 9, 8, 5, 3)(11,20,18,15,14)(12,19,17,16,13)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,13, 7,19, 4,16,10,11, 5,17)( 2,14, 8,20, 3,15, 9,12, 6,18)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 7, 4,10, 6)( 2, 8, 3, 9, 5)(11,18,14,20,15)(12,17,13,19,16)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,11, 3,14, 5,15, 8,17,10,19)( 2,12, 4,13, 6,16, 7,18, 9,20)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,14,15,18,20)(12,13,16,17,19)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,18, 5,12,10,16, 4,19, 7,13)( 2,17, 6,11, 9,15, 3,20, 8,14)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 6,10, 4, 7)( 2, 5, 9, 3, 8)(11,15,20,14,18)(12,16,19,13,17)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,19,10,18, 8,15, 5,14, 3,12)( 2,20, 9,17, 7,16, 6,13, 4,11)$ |
Group invariants
| Order: | $2560=2^{9} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |