Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $26$ | |
| Group : | $D_5.D_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,15,20,10)(2,12,19,8)(3,14,18,6)(4,11,17,9)(5,13,16,7), (1,19,5,20,4,16,3,17,2,18)(6,11,9,13,7,15,10,12,8,14) | |
| $|\Aut(F/K)|$: | $5$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: $F_5$, 20T2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 10: None
Low degree siblings
25T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6, 7, 8, 9,10)(11,13,15,12,14)(16,19,17,20,18)$ |
| $ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6, 8,10, 7, 9)(11,15,14,13,12)(16,17,18,19,20)$ |
| $ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6, 9, 7,10, 8)(11,12,13,14,15)(16,20,19,18,17)$ |
| $ 5, 5, 5, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 6,10, 9, 8, 7)(11,14,12,15,13)(16,18,20,17,19)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 2, 3, 4, 5)( 6, 8,10, 7, 9)(11,14,12,15,13)(16,20,19,18,17)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 3, 5, 2, 4)( 6,10, 9, 8, 7)(11,12,13,14,15)(16,19,17,20,18)$ |
| $ 4, 4, 4, 4, 4 $ | $25$ | $4$ | $( 1, 6,16,15)( 2, 9,20,12)( 3, 7,19,14)( 4,10,18,11)( 5, 8,17,13)$ |
| $ 4, 4, 4, 4, 4 $ | $25$ | $4$ | $( 1,11,17, 6)( 2,13,16, 9)( 3,15,20, 7)( 4,12,19,10)( 5,14,18, 8)$ |
| $ 10, 10 $ | $10$ | $10$ | $( 1,16, 4,18, 2,20, 5,17, 3,19)( 6,11, 7,15, 8,14, 9,13,10,12)$ |
| $ 10, 10 $ | $10$ | $10$ | $( 1,16, 2,20, 3,19, 4,18, 5,17)( 6,12, 8,15,10,13, 7,11, 9,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1,16)( 2,20)( 3,19)( 4,18)( 5,17)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)$ |
Group invariants
| Order: | $100=2^{2} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [100, 10] |
| Character table: |
2 2 . . . . . 1 1 2 2 1 1 2
5 2 2 2 2 2 2 2 2 . . 1 1 1
1a 5a 5b 5c 5d 5e 5f 5g 4a 4b 10a 10b 2a
2P 1a 5b 5d 5a 5c 5e 5g 5f 2a 2a 5g 5f 1a
3P 1a 5c 5a 5d 5b 5e 5g 5f 4b 4a 10b 10a 2a
5P 1a 1a 1a 1a 1a 1a 1a 1a 4a 4b 2a 2a 2a
7P 1a 5b 5d 5a 5c 5e 5g 5f 4b 4a 10b 10a 2a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 -1 -1 1 1 1
X.3 1 1 1 1 1 1 1 1 E -E -1 -1 -1
X.4 1 1 1 1 1 1 1 1 -E E -1 -1 -1
X.5 2 A *A *A A 2 A *A . . -A -*A -2
X.6 2 *A A A *A 2 *A A . . -*A -A -2
X.7 2 A *A *A A 2 A *A . . A *A 2
X.8 2 *A A A *A 2 *A A . . *A A 2
X.9 4 -1 -1 -1 -1 -1 4 4 . . . . .
X.10 4 B /C C /B -1 D *D . . . . .
X.11 4 C B /B /C -1 *D D . . . . .
X.12 4 /B C /C B -1 D *D . . . . .
X.13 4 /C /B B C -1 *D D . . . . .
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = -E(5)-E(5)^2+E(5)^3
C = -E(5)-E(5)^3+E(5)^4
D = 2*E(5)+2*E(5)^4
= -1+Sqrt(5) = 2b5
E = -E(4)
= -Sqrt(-1) = -i
|