Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $254$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,15,7,18,4,9,13,6,20)(2,11,16,8,17,3,10,14,5,19), (1,8,11,18,14)(2,7,12,17,13)(3,5,10,19,15)(4,6,9,20,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 5: $C_5$ 10: $C_{10}$ 80: $C_2^4 : C_5$ 160: $C_2 \times (C_2^4 : C_5)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_2 \times (C_2^4 : C_5)$
Low degree siblings
20T251 x 8, 20T254 x 7, 40T1880 x 8, 40T1882 x 8, 40T1958 x 2, 40T1959 x 2, 40T1972 x 4, 40T1973 x 4, 40T2011 x 2, 40T2013 x 2, 40T2021 x 4, 40T2114 x 4, 40T2123 x 8, 40T2124 x 8, 40T2125 x 8, 40T2129 x 8, 40T2130 x 8, 40T2131 x 8, 40T2136 x 2, 40T2138 x 2, 40T2142 x 2, 40T2143 x 2, 40T2147 x 4, 40T2165 x 4, 40T2168 x 4, 40T2173 x 8, 40T2174 x 8, 40T2205 x 4, 40T2208 x 4, 40T2243 x 4, 40T2245 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $2$ | $( 1, 4)( 2, 3)( 9,11)(10,12)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $2$ | $( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,11)(10,12)(13,14)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(17,20,18,19)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,14)(15,16)(17,20,18,19)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 7, 8)(13,15,14,16)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 7, 8)( 9,10)(11,12)(13,15,14,16)(17,18)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1,15,18, 9, 6)( 2,16,17,10, 5)( 3,14,19,11, 8)( 4,13,20,12, 7)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1,18, 6,15, 9)( 2,17, 5,16,10)( 3,19, 8,14,11)( 4,20, 7,13,12)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 6, 9,18,15)( 2, 5,10,17,16)( 3, 8,11,19,14)( 4, 7,12,20,13)$ |
| $ 5, 5, 5, 5 $ | $256$ | $5$ | $( 1, 9,15, 6,18)( 2,10,16, 5,17)( 3,11,14, 8,19)( 4,12,13, 7,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $(11,12)(15,16)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 1, 2)( 3, 4)(11,12)(15,16)(17,20)(18,19)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $( 5, 6)( 7, 8)(11,12)(13,14)(17,19)(18,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $20$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(11,12)(13,14)(17,20)(18,19)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $4$ | $( 1, 4)( 2, 3)( 9,11,10,12)(17,20,18,19)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,11,10,12)(13,14)(15,16)(17,20,18,19)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $20$ | $4$ | $( 1, 4)( 2, 3)( 9,11,10,12)(13,14)(15,16)(17,19,18,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $20$ | $4$ | $( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,11,10,12)(17,19,18,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $80$ | $4$ | $( 1, 4, 2, 3)( 5, 7)( 6, 8)( 9,11,10,12)(15,16)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,15,17,11, 7, 4,13,20, 9, 6)( 2,16,18,12, 8, 3,14,19,10, 5)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1,18, 7,13,12, 3,19, 5,16, 9)( 2,17, 8,14,11, 4,20, 6,15,10)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1, 6, 9,18,13, 4, 7,12,19,16)( 2, 5,10,17,14, 3, 8,11,20,15)$ |
| $ 10, 10 $ | $256$ | $10$ | $( 1, 9,15, 5,17, 3,11,13, 7,20)( 2,10,16, 6,18, 4,12,14, 8,19)$ |
Group invariants
| Order: | $2560=2^{9} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |