Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $24$ | |
| Group : | $C_{10}\times D_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20,5,3,10,7,13,12,17,15)(2,19,6,4,9,8,14,11,18,16), (1,14,5,18,10,2,13,6,17,9)(3,19,15,11,7,4,20,16,12,8) | |
| $|\Aut(F/K)|$: | $10$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 5: $C_5$ 10: $D_{5}$, $C_{10}$ x 3 20: $D_{10}$, 20T3 50: $D_5\times C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: None
Degree 10: $D_5\times C_5$
Low degree siblings
20T24Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $5$ | $( 3, 7,12,15,20)( 4, 8,11,16,19)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $5$ | $( 3,12,20, 7,15)( 4,11,19, 8,16)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $5$ | $( 3,15, 7,20,12)( 4,16, 8,19,11)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $5$ | $( 3,20,15,12, 7)( 4,19,16,11, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $2$ | $10$ | $( 1, 2)( 3, 8,12,16,20, 4, 7,11,15,19)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $2$ | $10$ | $( 1, 2)( 3,11,20, 8,15, 4,12,19, 7,16)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $2$ | $10$ | $( 1, 2)( 3,16, 7,19,12, 4,15, 8,20,11)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $2$ | $10$ | $( 1, 2)( 3,19,15,11, 7, 4,20,16,12, 8)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 3, 5, 7,10,12,13,15,17,20)( 2, 4, 6, 8, 9,11,14,16,18,19)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 3,10,12,17,20, 5, 7,13,15)( 2, 4, 9,11,18,19, 6, 8,14,16)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 3,13,15, 5, 7,17,20,10,12)( 2, 4,14,16, 6, 8,18,19, 9,11)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 3,17,20,13,15,10,12, 5, 7)( 2, 4,18,19,14,16, 9,11, 6, 8)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 4, 5, 8,10,11,13,16,17,19)( 2, 3, 6, 7, 9,12,14,15,18,20)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 4,10,11,17,19, 5, 8,13,16)( 2, 3, 9,12,18,20, 6, 7,14,15)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 4,13,16, 5, 8,17,19,10,11)( 2, 3,14,15, 6, 7,18,20, 9,12)$ |
| $ 10, 10 $ | $5$ | $10$ | $( 1, 4,17,19,13,16,10,11, 5, 8)( 2, 3,18,20,14,15, 9,12, 6, 7)$ |
| $ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1, 5,10,13,17)( 2, 6, 9,14,18)( 3, 7,12,15,20)( 4, 8,11,16,19)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5,10,13,17)( 2, 6, 9,14,18)( 3,12,20, 7,15)( 4,11,19, 8,16)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5,10,13,17)( 2, 6, 9,14,18)( 3,15, 7,20,12)( 4,16, 8,19,11)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 5,10,13,17)( 2, 6, 9,14,18)( 3,20,15,12, 7)( 4,19,16,11, 8)$ |
| $ 10, 10 $ | $1$ | $10$ | $( 1, 6,10,14,17, 2, 5, 9,13,18)( 3, 8,12,16,20, 4, 7,11,15,19)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 6,10,14,17, 2, 5, 9,13,18)( 3,11,20, 8,15, 4,12,19, 7,16)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 6,10,14,17, 2, 5, 9,13,18)( 3,16, 7,19,12, 4,15, 8,20,11)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 6,10,14,17, 2, 5, 9,13,18)( 3,19,15,11, 7, 4,20,16,12, 8)$ |
| $ 10, 10 $ | $1$ | $10$ | $( 1, 9,17, 6,13, 2,10,18, 5,14)( 3,11,20, 8,15, 4,12,19, 7,16)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 9,17, 6,13, 2,10,18, 5,14)( 3,16, 7,19,12, 4,15, 8,20,11)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 9,17, 6,13, 2,10,18, 5,14)( 3,19,15,11, 7, 4,20,16,12, 8)$ |
| $ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,10,17, 5,13)( 2, 9,18, 6,14)( 3,12,20, 7,15)( 4,11,19, 8,16)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,17, 5,13)( 2, 9,18, 6,14)( 3,15, 7,20,12)( 4,16, 8,19,11)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,17, 5,13)( 2, 9,18, 6,14)( 3,20,15,12, 7)( 4,19,16,11, 8)$ |
| $ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,13, 5,17,10)( 2,14, 6,18, 9)( 3,15, 7,20,12)( 4,16, 8,19,11)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,13, 5,17,10)( 2,14, 6,18, 9)( 3,20,15,12, 7)( 4,19,16,11, 8)$ |
| $ 10, 10 $ | $1$ | $10$ | $( 1,14, 5,18,10, 2,13, 6,17, 9)( 3,16, 7,19,12, 4,15, 8,20,11)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1,14, 5,18,10, 2,13, 6,17, 9)( 3,19,15,11, 7, 4,20,16,12, 8)$ |
| $ 5, 5, 5, 5 $ | $1$ | $5$ | $( 1,17,13,10, 5)( 2,18,14, 9, 6)( 3,20,15,12, 7)( 4,19,16,11, 8)$ |
| $ 10, 10 $ | $1$ | $10$ | $( 1,18,13, 9, 5, 2,17,14,10, 6)( 3,19,15,11, 7, 4,20,16,12, 8)$ |
Group invariants
| Order: | $100=2^{2} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [100, 14] |
| Character table: Data not available. |