Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $226$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,20)(2,19)(3,14)(4,13)(5,6)(7,18)(8,17)(9,12)(10,11)(15,16), (1,14,5,19,18)(2,13,6,20,17)(3,16,10,7,12)(4,15,9,8,11) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 120: $S_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $S_5$
Degree 10: $S_5$, $(C_2^4:A_5) : C_2$, $(C_2^4:A_5) : C_2$
Low degree siblings
10T37, 10T38, 16T1328, 20T218, 20T219, 20T222, 20T223, 30T329, 30T332, 30T333, 30T341, 32T97736, 40T1581, 40T1582, 40T1583, 40T1584, 40T1587, 40T1588, 40T1595, 40T1596, 40T1658, 40T1659, 40T1676, 40T1677, 40T1678Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $60$ | $2$ | $( 1, 6)( 2, 5)( 3,14)( 4,13)( 7, 8)( 9,20)(10,19)(11,16)(12,15)(17,18)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $60$ | $4$ | $( 1, 6,11,16)( 2, 5,12,15)( 3,14)( 4,13)( 7, 8)( 9,10)(17,18)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 6,11,16)( 2, 5,12,15)( 3,14)( 4,13)( 7,18)( 8,17)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 6)( 2, 5)( 3, 4)( 7, 8)( 9,10)(11,16)(12,15)(13,14)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $60$ | $2$ | $( 1, 5)( 2, 6)( 7,20)( 8,19)( 9,18)(10,17)(11,15)(12,16)$ |
| $ 4, 4, 4, 4, 1, 1, 1, 1 $ | $60$ | $4$ | $( 1, 5,11,15)( 2, 6,12,16)( 7,10,17,20)( 8, 9,18,19)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $120$ | $4$ | $( 1, 5)( 2, 6)( 3,13)( 4,14)( 7,10,17,20)( 8, 9,18,19)(11,15)(12,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1 $ | $80$ | $3$ | $( 1,15,19)( 2,16,20)( 5, 9,11)( 6,10,12)$ |
| $ 6, 6, 2, 2, 1, 1, 1, 1 $ | $160$ | $6$ | $( 1,15, 9,11, 5,19)( 2,16,10,12, 6,20)( 7,17)( 8,18)$ |
| $ 3, 3, 3, 3, 2, 2, 2, 2 $ | $80$ | $6$ | $( 1,15,19)( 2,16,20)( 3,13)( 4,14)( 5, 9,11)( 6,10,12)( 7,17)( 8,18)$ |
| $ 6, 6, 2, 2, 2, 2 $ | $160$ | $6$ | $( 1, 6, 9, 2, 5,10)( 3, 8)( 4, 7)(11,16,19,12,15,20)(13,18)(14,17)$ |
| $ 6, 6, 4, 4 $ | $160$ | $12$ | $( 1, 6,19,12,15,10)( 2, 5,20,11,16, 9)( 3,18,13, 8)( 4,17,14, 7)$ |
| $ 8, 8, 2, 2 $ | $240$ | $8$ | $( 1,16,19,17,11, 6, 9, 7)( 2,15,20,18,12, 5,10, 8)( 3,14)( 4,13)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $240$ | $4$ | $( 1,16, 9, 7)( 2,15,10, 8)( 3, 4)( 5,20,18,12)( 6,19,17,11)(13,14)$ |
| $ 5, 5, 5, 5 $ | $384$ | $5$ | $( 1, 5, 9,18, 4)( 2, 6,10,17, 3)( 7,13,12,16,20)( 8,14,11,15,19)$ |
Group invariants
| Order: | $1920=2^{7} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 7 6 7 5 5 5 5 5 5 4 3 2 3 2 2 3 3 .
3 1 1 1 . . 1 1 . . . 1 1 1 1 1 . . .
5 1 . . . . . . . . . . . . . . . . 1
1a 2a 2b 2c 4a 4b 2d 2e 4c 4d 3a 6a 6b 6c 12a 8a 4e 5a
2P 1a 1a 1a 1a 2a 2a 1a 1a 2b 2a 3a 3a 3a 3a 6b 4c 2e 5a
3P 1a 2a 2b 2c 4a 4b 2d 2e 4c 4d 1a 2b 2a 2d 4b 8a 4e 5a
5P 1a 2a 2b 2c 4a 4b 2d 2e 4c 4d 3a 6a 6b 6c 12a 8a 4e 1a
7P 1a 2a 2b 2c 4a 4b 2d 2e 4c 4d 3a 6a 6b 6c 12a 8a 4e 5a
11P 1a 2a 2b 2c 4a 4b 2d 2e 4c 4d 3a 6a 6b 6c 12a 8a 4e 5a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1
X.3 4 4 4 -2 -2 -2 -2 . . . 1 1 1 1 1 . . -1
X.4 4 4 4 2 2 2 2 . . . 1 1 1 -1 -1 . . -1
X.5 5 5 5 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 .
X.6 5 5 5 1 1 1 1 1 1 1 -1 -1 -1 1 1 -1 -1 .
X.7 5 1 -3 -1 1 -3 3 1 1 -1 2 . -2 . . -1 1 .
X.8 5 1 -3 1 -1 3 -3 1 1 -1 2 . -2 . . 1 -1 .
X.9 6 6 6 . . . . -2 -2 -2 . . . . . . . 1
X.10 10 -2 2 . 2 -2 -4 2 -2 . 1 -1 1 -1 1 . . .
X.11 10 -2 2 2 . -4 -2 -2 2 . 1 -1 1 1 -1 . . .
X.12 10 -2 2 . -2 2 4 2 -2 . 1 -1 1 1 -1 . . .
X.13 10 -2 2 -2 . 4 2 -2 2 . 1 -1 1 -1 1 . . .
X.14 10 2 -6 . . . . 2 2 -2 -2 . 2 . . . . .
X.15 15 3 -9 1 -1 3 -3 -1 -1 1 . . . . . -1 1 .
X.16 15 3 -9 -1 1 -3 3 -1 -1 1 . . . . . 1 -1 .
X.17 20 -4 4 -2 2 2 -2 . . . -1 1 -1 1 -1 . . .
X.18 20 -4 4 2 -2 -2 2 . . . -1 1 -1 -1 1 . . .
|