Show commands:
Magma
magma: G := TransitiveGroup(20, 22);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $22$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{10}:C_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14,5,12)(2,13,6,11)(3,17,4,18)(7,15,9,19)(8,16,10,20), (1,5,10,3,7,2,6,9,4,8)(11,15,20,14,18)(12,16,19,13,17) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $20$: $F_5$ $40$: $F_{5}\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $F_5$
Degree 10: $F_5$
Low degree siblings
20T19 x 2, 20T22, 40T26, 40T45, 40T55 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{5},1^{10}$ | $2$ | $2$ | $5$ | $(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2C | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 7,10)( 8, 9)(11,14)(12,13)(15,20)(16,19)$ |
2D | $2^{10}$ | $5$ | $2$ | $10$ | $( 1, 5)( 2, 6)( 3, 4)( 7, 9)( 8,10)(11,13)(12,14)(15,19)(16,20)(17,18)$ |
2E | $2^{9},1^{2}$ | $10$ | $2$ | $9$ | $( 1, 3)( 2, 4)( 5,10)( 6, 9)( 7, 8)(13,19)(14,20)(15,18)(16,17)$ |
4A1 | $4^{5}$ | $10$ | $4$ | $15$ | $( 1,12, 5,14)( 2,11, 6,13)( 3,18, 4,17)( 7,19, 9,15)( 8,20,10,16)$ |
4A-1 | $4^{5}$ | $10$ | $4$ | $15$ | $( 1,14, 5,12)( 2,13, 6,11)( 3,17, 4,18)( 7,15, 9,19)( 8,16,10,20)$ |
4B1 | $4^{4},2^{2}$ | $10$ | $4$ | $14$ | $( 1,18, 7,20)( 2,17, 8,19)( 3,12, 5,16)( 4,11, 6,15)( 9,13)(10,14)$ |
4B-1 | $4^{4},2^{2}$ | $10$ | $4$ | $14$ | $( 1,17,10,12)( 2,18, 9,11)( 3,14, 8,15)( 4,13, 7,16)( 5,20)( 6,19)$ |
5A | $5^{4}$ | $4$ | $5$ | $16$ | $( 1, 6,10, 4, 7)( 2, 5, 9, 3, 8)(11,15,20,14,18)(12,16,19,13,17)$ |
10A | $10^{2}$ | $4$ | $10$ | $18$ | $( 1, 5,10, 3, 7, 2, 6, 9, 4, 8)(11,16,20,13,18,12,15,19,14,17)$ |
10B1 | $10,5^{2}$ | $4$ | $10$ | $17$ | $( 1, 4, 6, 7,10)( 2, 3, 5, 8, 9)(11,13,15,17,20,12,14,16,18,19)$ |
10B3 | $10,5^{2}$ | $4$ | $10$ | $17$ | $( 1, 7, 4,10, 6)( 2, 8, 3, 9, 5)(11,17,14,19,15,12,18,13,20,16)$ |
magma: ConjugacyClasses(G);
Malle's constant $a(G)$: $1/5$
Group invariants
Order: | $80=2^{4} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 80.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 10A | 10B1 | 10B3 | ||
Size | 1 | 1 | 2 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2D | 2D | 2C | 2C | 5A | 5A | 5A | 5A | |
5 P | 1A | 2A | 2B | 2C | 2D | 2E | 4B-1 | 4B1 | 4A-1 | 4A1 | 1A | 2A | 2B | 2B | |
Type | |||||||||||||||
80.34.1a | R | ||||||||||||||
80.34.1b | R | ||||||||||||||
80.34.1c | R | ||||||||||||||
80.34.1d | R | ||||||||||||||
80.34.1e1 | C | ||||||||||||||
80.34.1e2 | C | ||||||||||||||
80.34.1f1 | C | ||||||||||||||
80.34.1f2 | C | ||||||||||||||
80.34.2a | R | ||||||||||||||
80.34.2b | R | ||||||||||||||
80.34.4a | R | ||||||||||||||
80.34.4b | R | ||||||||||||||
80.34.4c1 | R | ||||||||||||||
80.34.4c2 | R |
magma: CharacterTable(G);